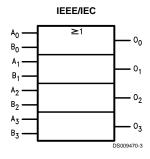


74F86

2-Input Exclusive-OR Gate

General Description


This device contains four independent gates, each of which performs the logic exclusive-OR function.

Ordering Code:

Commercial Package Number			Package Description
	74F86PC N14A		14-Lead (0.300" Wide) Molded Dual-in-Line
	74F86SC (Note 1)	M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC
	74F86SJ (Note 1)	M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Logic Symbol

Connection Diagram

Pin Assignment for DIP and SOIC A0 1 14 VCC B0 3 12 B2 A1 4 4 10 02 B1 5 10 A3 COLUMN A3 COLUMN

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
A_n, B_n	Inputs	1.0/1.0	20 μA/-0.6 mA		
O _n	Outputs	50/33.3	–1 mA/20 mA		

Absolute Maximum Ratings (Note 2)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C Plastic -55°C to +150°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 3) -0.5V to +7.0VInput Current (Note 3) -30~mA to +5.0~mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

–0.5V to $V_{\rm CC}$ Standard Output 3-STATE Output -0.5V to +5.5V Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Commercial

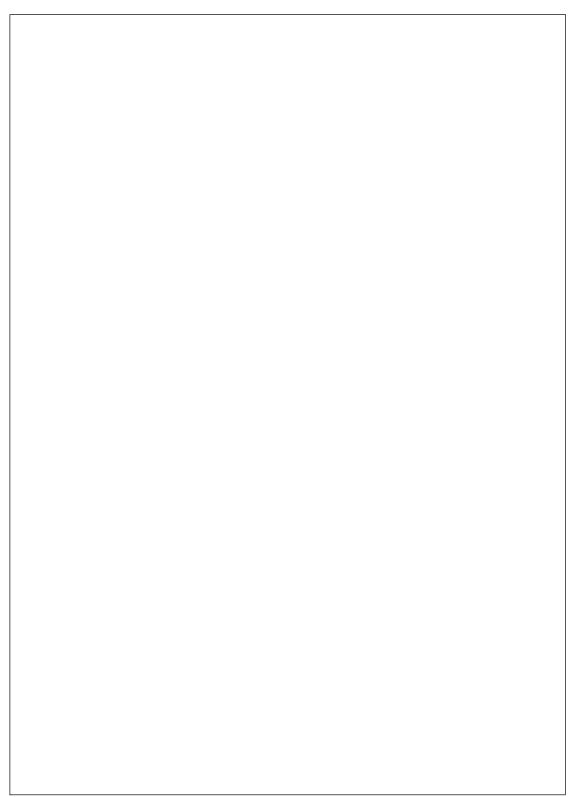
0°C to +70°C

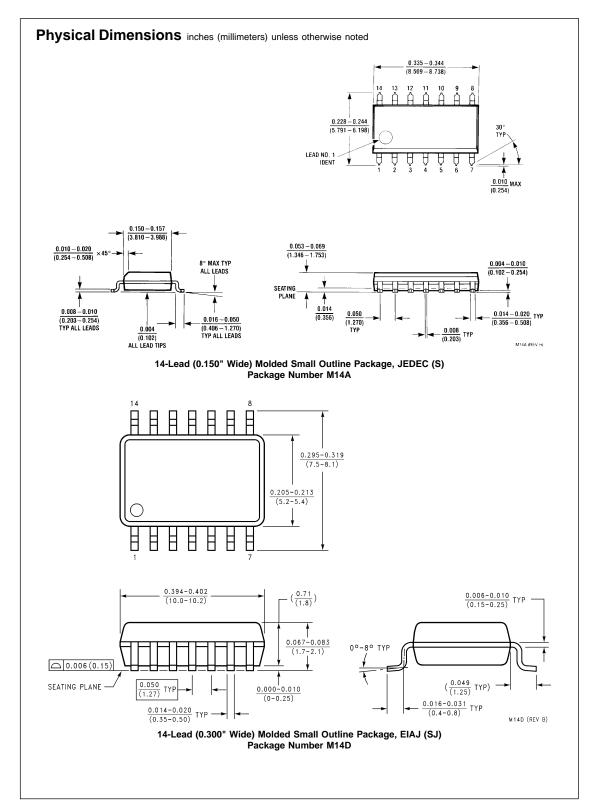
Supply Voltage Commercial

+4.5V to +5.5V

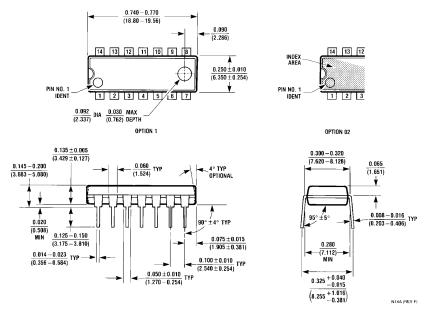
Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these

Note 3: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parame	ter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
		5% V _{CC}	2.7			· ·	IVIIII	I _{OH} = -1 mA
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5		Min	I _{OL} = 20 mA
I _{IH}	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Break	down Test			7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current				50	μA	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All other pins grounded
I _{OD}	Output Leakage Circuit Current				3.75	μA	0.0	V _{IOD} = 150 mV
								All other pins grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
los	Output Short-Circuit Curre	ent	-60		-150	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current			12	18	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			18	28	mA	Max	V _O = LOW

AC Electrical Characteristics


Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation Delay	3.0	4.0	5.5	3.0	6.5	
t _{PHL}	A _n , B _n to O _n (Other Input LOW)	3.0	4.2	5.5	3.0	6.5	ns
t _{PLH}	Propagation Delay	3.5	5.3	7.0	3.5	8.0	
t _{PHL}	A _n , B _n to O _n (Other Input HIGH)	3.0	4.7	6.5	3.0	7.5	ns

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead (0.300" Wide) Molded Dual-In-Line Package (P) Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com