MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

General Description

FAIRCHILD

SEMICONDUCTOR

The MM74HC574 high speed octal D-type flip-flops utilize advanced silicon-gate P-well CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

These devices are positive edge triggered flip-flops. Data at the D inputs, meeting the set-up and hold time requirements, are transferred to the Q outputs on positive going transitions of the CLOCK (CK) input. When a high logic level is applied to the OUTPUT CONTROL (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The 74HC logic family is speed, function, and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 18 ns
- Wide operating voltage range: 2V–6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC574WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC574N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
D	·	

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

Output	Clock	Data	Output	
Control				
L	↑	Н	Н	
L	\uparrow	L	L	
L	L	Х	Q ₀	
н	Х	Х	Z	

H = HIGH Level

X = Don't Care

↑ = Transition from LOW-to-HIGH

 $Z=\mbox{High Impedance State}$ $Q_0=\mbox{The level of the output before steady state input conditions were established}$

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

(Note 2)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units		
Supply Voltage (V _{CC})	2	6	V		
DC Input or Output Voltage	0	V _{CC}	V		
(V _{IN} ,V _{OUT})					
Operating Temperature Range (T _A)	-40	+85	°C		
Input Rise or Fall Times					
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns		
$V_{CC} = 4.5V$		500	ns		
Note 1. Maximum Ratings are those values	hevond w	hich damad	e to the		

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125$		Units
Symbol				Тур		Guaranteed L	imits	onita
VIH	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
VIL	Maximum LOW Level Input		2.0V		0.5	0.5	0.5	
	Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	v
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	v
V _{OL}	Maximum LOW Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	v
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	v
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
I _{OZ}	Maximum 3-STATE	$V_{OUT} = V_{CC}$ or GND						
	Output Leakage Current	$OC=V_{IH}$	6.0V		±0.5	±5.0	±10	μA
I _{CC}	Maximum Quiescent Supply	$V_{IN} = V_{CC}$ or GND						l
	Current	$I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μA
ΔI_{CC}	Quiescent Supply Current	$V_{CC} = 5.5V$	OE	1.0	1.5	1.8	2.0	
	per Input Pin	$V_{IN} = 2.4V$	CLK	0.6	0.8	1.0	1.1	mA
		or 0.4V (Note 4)	DATA	0.4	0.5	0.6	0.7	1

Note 4: For a power supply of 5V \pm 10% the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

100-01	, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns							0	
Symbol	I Parameter			Con	ditions		Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequer	Maximum Operating Frequency					60	33	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay	, Clock to Q	lock to Q $C_L = 45 \text{ pF}$				17	27	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Tim	ie	$R_L = 1 k\Omega$				19	28	ns
			$C_L = 45 \mu$	οF					
t _{PHZ} , t _{PLZ}	Maximum Output Disable Tin		$R_L = 1 k\Omega$				14	25	ns
			$C_L = 5 p f$	F			10	40	
t _S	Minimum Setup Time, Data to Minimum Hold Time, Clock to						10	12	ns
t _H t _W	Minimum Hold Time, Clock to Minimum Pulse Clock Width	Dala					-3 8	5 15	ns ns
	lectrical Characte $0 - 6.0V, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ r}$		erwise spo	ecified)					
Symbol	Parameter	Condition		v _{cc}	T _A =	25°C	$T_A = -40$ to 85°	C $T_{A} = -55 \text{ to } 125$	5°C Unit
Cymbol				-00	Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency	$C_L = 50 \text{ pF}$		2.0V		33	28	23	
				4.5V		30	24	20	MH
. ,	Maximum Dran	0 50-5		6.0V	10	35	28	23	
t _{PHL} , t _{PLH}	Maximum Propagation	$C_{L} = 50 \text{ pF}$		2.0V 2.0V	18 51	30 155	38	45	ns
	Delay, Clock to Q	$C_{L} = 150 \text{ pF}$ $C_{L} = 50 \text{ pF}$		2.0V 4.5V	51 13	155 23	194 29	233	
		$C_{L} = 30 \text{ pr}$ $C_{L} = 150 \text{ pF}$		4.5V	13	23 31	47	47	ns
		$C_L = 50 \text{ pF}$		6.0V	12	20	25	30	
		C _L = 150 pF		6.0V	18	27	34	41	ns
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$							
	Time	$C_L = 50 \text{ pF}$	2	2.0V	22	30	38	45	ns
		$C_L = 150 \text{ pF}$		2.0V	59	180	225	270	110
		$C_L = 50 \text{ pF}$		4.5V	14	28	35	42	ns
		$C_{L} = 150 \text{ pF}$ $C_{L} = 50 \text{ pF}$		4.5V 6.0V	20 12	36 24	45 30	54 36	
		$C_{L} = 30 \text{ pr}$ $C_{L} = 150 \text{ pF}$		6.0V	12	31	39	47	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$		2.0V	15	30	38	45	
		C _L = 50 pF	4	4.5V	12	25	31	38	ns
			(6.0V	10	21	27	32	
t _S	Minimum Setup Time			2.0V	6	12	15	18	
	Data to Clock			4.5V		20	25	30	ns
		ļ		6.0V		17	21	25	
t _H	Minimum Hold Time			2.0V 4.5V	-1	5 0	6	8 0	
	Clock to Data			4.5V 6.0V		0	0	0	ns
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF		2.0V	6	12	15	18	
THE TELL	and Fall Time			4.5V	7	12	15	18	ns
			6	6.0V	6	10	13	15	
t _W	Minimum Clock Pulse Width			2.0V	30	15	20	24	
				4.5V	9	16	20	24	ns
		ļ		6.0V	8	14	18	20	
t _r ,t _f	Maximum Clock Input Rise			2.0V		1000	1000	1000	
	and Fall Time			4.5V 6.0V		500 400	500 400	500 400	ns
Cas	Power Dissipation Capacitance	$OC = V_{CC}$		0.07	5	400	400	400	
C _{PD}	(Note 5) (per latch)	$OC = V_{CC}$ OC = GND			5				pF
CIN	Maximum Input Capacitance	50 0110			5	10	10	10	pF

MM74HC574

MM74HC574

AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_{A} = -40$ to 85°C $T_{A} = -55$ to 125°C		Units
				Тур	Guaranteed Limits			
C _{OUT}	Maximum Output			15	20	20	20	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

