## Features

- High Performance, Low Power AVR<sup>®</sup> 8-Bit Microcontroller
- Advanced RISC Architecture
  - 131 Powerful Instructions Most Single Clock Cycle Execution
  - 32 x 8 General Purpose Working Registers
  - Fully Static Operation
  - Up to 20 MIPS Throughput at 20 MHz
  - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
  - 4/8/16/32K Bytes of In-System Self-Programmable Flash progam memory (ATmega48P/88P/168P/328P)
  - 256/512/512/1K Bytes EEPROM (ATmega48P/88P/168P/328P)
  - 512/1K/1K/2K Bytes Internal SRAM (ATmega48P/88P/168P/328P)
  - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
  - Data retention: 20 years at 85°C/100 years at 25°C<sup>(1)</sup>
  - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
  - Programming Lock for Software Security
- Peripheral Features
  - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
  - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
  - Real Time Counter with Separate Oscillator
  - Six PWM Channels
  - 8-channel 10-bit ADC in TQFP and QFN/MLF package Temperature Measurement
  - 6-channel 10-bit ADC in PDIP Package Temperature Measurement
  - Programmable Serial USART
  - Master/Slave SPI Serial Interface
  - Byte-oriented 2-wire Serial Interface (Philips I<sup>2</sup>C compatible)
  - Programmable Watchdog Timer with Separate On-chip Oscillator
  - On-chip Analog Comparator
  - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated Oscillator
  - External and Internal Interrupt Sources
  - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
  - 23 Programmable I/O Lines
  - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
  - 1.8 5.5V for ATmega48P/88P/168PV
  - 2.7 5.5V for ATmega48P/88P/168P
  - 1.8 5.5V for ATmega328P
- Temperature Range:
- -40°C to 85°C
- Speed Grade:
  - ATmega48P/88P/168PV: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V
  - ATmega48P/88P/168P: 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
  - ATmega328P: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Low Power Consumption at 1 MHz, 1.8V, 25°C for ATmega48P/88P/168P:
- Active Mode: 0.3 mA
  - Power-down Mode: 0.1 μA
  - Power-save Mode: 0.8 μA (Including 32 kHz RTC)

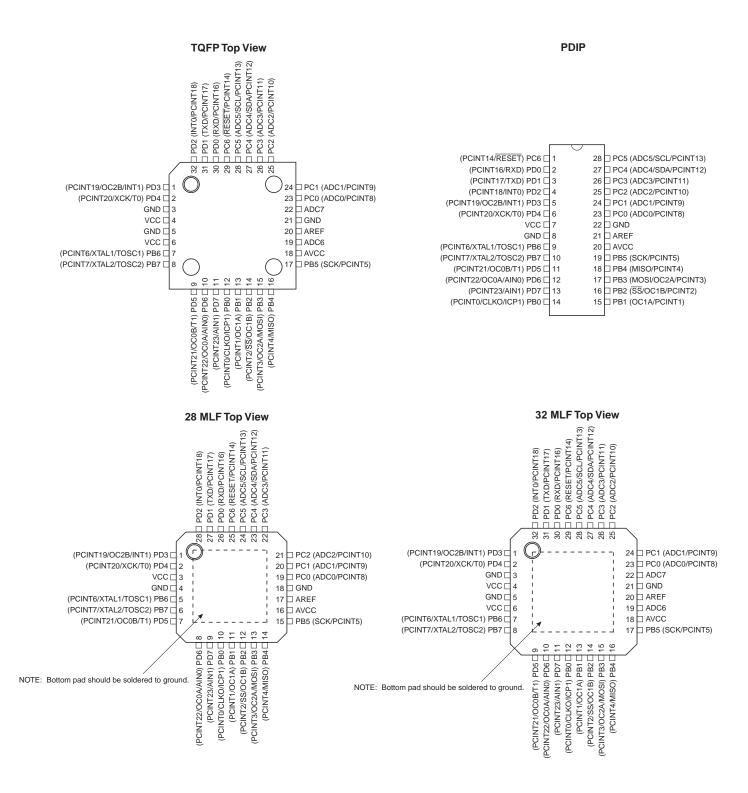




8-bit **AVR**<sup>®</sup> Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

ATmega48P/V ATmega88P/V ATmega168P/V ATmega328P

Preliminary


## Summary

Rev. 8025FS-AVR-08/08



## 1. Pin Configurations





# <sup>2</sup> ATmega48P/88P/168P/328P

### 1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

#### 1.1.2 GND

Ground.

#### 1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 82 and "System Clock and Clock Options" on page 26.

#### 1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

#### 1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 28-3 on page 320. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 85.

#### 1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.





The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 88.

### 1.1.7 AV<sub>cc</sub>

 $AV_{CC}$  is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to  $V_{CC}$ , even if the ADC is not used. If the ADC is used, it should be connected to  $V_{CC}$  through a low-pass filter. Note that PC6..4 use digital supply voltage,  $V_{CC}$ .

#### 1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

#### 1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

### 1.2 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

## 2. Overview

The ATmega48P/88P/168P/328P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48P/88P/168P/328P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

## 2.1 Block Diagram

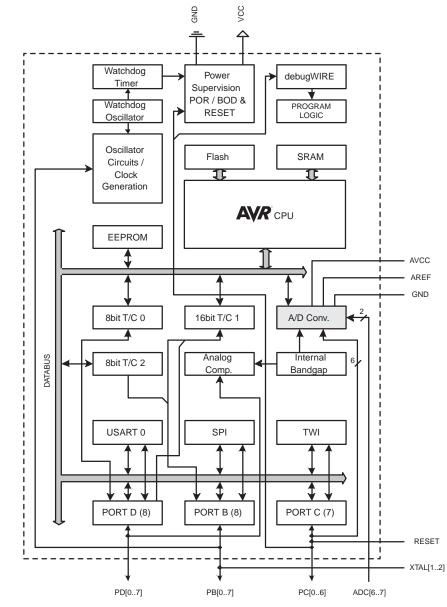



Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting





architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48P/88P/168P/328P provides the following features: 4K/8K/16K/32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1K bytes EEPROM, 512/1K/1K/2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48P/88P/168P/328P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48P/88P/168P/328P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

## 2.2 Comparison Between ATmega48P, ATmega88P, ATmega168P, and ATmega328P

The ATmega48P, ATmega88P, ATmega168P, and ATmega328P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.

| Device     | Flash     | EEPROM    | RAM       | Interrupt Vector Size       |
|------------|-----------|-----------|-----------|-----------------------------|
| ATmega48P  | 4K Bytes  | 256 Bytes | 512 Bytes | 1 instruction word/vector   |
| ATmega88P  | 8K Bytes  | 512 Bytes | 1K Bytes  | 1 instruction word/vector   |
| ATmega168P | 16K Bytes | 512 Bytes | 1K Bytes  | 2 instruction words/vector  |
| ATmega328P | 32K Bytes | 1K Bytes  | 2K Bytes  | 2 instructions words/vector |

**Table 2-1.**Memory Size Summary

ATmega88P, ATmega168P, and ATmega328P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48P, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

## 3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

## 4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.



# 8 ATmega48P/88P/168P/328P

| Address          | Name                 | Bit 7   | Bit 6   | Bit 5  | Bit 4        | Bit 3            | Bit 2          | Bit 1             | Bit 0  | Page    |
|------------------|----------------------|---------|---------|--------|--------------|------------------|----------------|-------------------|--------|---------|
| (0xFF)           | Reserved             | -       | _       | -      | _            | -                | _              | -                 | -      |         |
| (0xFE)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xFD)           | Reserved             | -       | -       | -      | -            | -                | _              | -                 | -      |         |
| (0xFC)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xFB)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xFA)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF9)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF8)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF7)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF6)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF5)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF4)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF3)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF2)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF1)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xF0)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xEF)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xEE)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xED)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xEC)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xEB)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xEA)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE9)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE8)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE7)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE6)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE5)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE4)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE3)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE2)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xE1)<br>(0xE0) | Reserved<br>Reserved | -       | -       | -      | -            | _                | -              | -                 | -      |         |
| (0xE0)<br>(0xDF) | Reserved             | _       | _       | _      |              | _                | _              | _                 |        |         |
| (0xDE)           | Reserved             |         | _       |        |              | _                | _              |                   |        |         |
| (0xDD)           | Reserved             | _       | _       |        | _            | _                | _              |                   |        |         |
| (0xDC)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | _      |         |
| (0xDB)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | -      |         |
| (0xDA)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | _      |         |
| (0xD9)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | _      |         |
| (0xD8)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | -      |         |
| (0xD7)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xD6)           | Reserved             | -       | -       | -      | -            | -                | _              | -                 | -      |         |
| (0xD5)           | Reserved             | -       | -       | -      | -            | -                | _              | -                 | -      |         |
| (0xD4)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xD3)           | Reserved             | -       | -       | -      | -            | _                | _              | -                 | -      |         |
| (0xD2)           | Reserved             | _       | _       | _      | _            | _                | _              | _                 | _      |         |
| (0xD1)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xD0)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCF)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCE)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCD)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCC)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCB)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xCA)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xC9)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xC8)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xC7)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xC6)           | UDR0                 |         |         |        | USART I/O    | Data Register    |                |                   |        | 195     |
| (0xC5)           | UBRR0H               |         |         |        |              |                  | USART Baud R   | ate Register High |        | 199     |
| (0xC4)           | UBRR0L               |         |         |        | USART Baud R | ate Register Low |                |                   |        | 199     |
| (0xC3)           | Reserved             | -       | -       | -      | -            | -                | -              | -                 | -      |         |
| (0xC2)           | UCSR0C               | UMSEL01 | UMSEL00 | UPM01  | UPM00        | USBS0            | UCSZ01 /UDORD0 | UCSZ00 / UCPHA0   | UCPOL0 | 197/212 |
| (0xC1)           | UCSR0B               | RXCIE0  | TXCIE0  | UDRIE0 | RXEN0        | TXEN0            | UCSZ02         | RXB80             | TXB80  | 196     |
| (0xC0)           | UCSR0A               | RXC0    | TXC0    | UDRE0  | FE0          | DOR0             | UPE0           | U2X0              | MPCM0  | 195     |

## 5. Register Summary

| Address          | Name                 | Bit 7           | Bit 6           | Bit 5    | Bit 4                 | Bit 3              | Bit 2       | Bit 1         | Bit 0         | Page       |
|------------------|----------------------|-----------------|-----------------|----------|-----------------------|--------------------|-------------|---------------|---------------|------------|
| (0xBF)           | Reserved             | -               | -               | _        | -                     | -                  | -           | _             | -             | _          |
| (0xBE)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xBD)           | TWAMR                | TWAM6           | TWAM5           | TWAM4    | TWAM3                 | TWAM2              | TWAM1       | TWAM0         | -             | 245        |
| (0xBC)           | TWCR                 | TWINT           | TWEA            | TWSTA    | TWSTO                 | TWWC               | TWEN        | -             | TWIE          | 242        |
| (0xBB)           | TWDR                 |                 |                 |          | 2-wire Serial Inte    | rface Data Registe | ər          |               |               | 244        |
| (0xBA)           | TWAR                 | TWA6            | TWA5            | TWA4     | TWA3                  | TWA2               | TWA1        | TWA0          | TWGCE         | 245        |
| (0xB9)           | TWSR                 | TWS7            | TWS6            | TWS5     | TWS4                  | TWS3               | -           | TWPS1         | TWPS0         | 244        |
| (0xB8)           | TWBR                 |                 |                 |          | 2-wire Serial Interfa | ace Bit Rate Regis |             |               |               | 242        |
| (0xB7)           | Reserved             | -               | EXOLX           | -        | –<br>TCN2UB           | -                  | -           | -             | -             | 404        |
| (0xB6)<br>(0xB5) | ASSR<br>Reserved     | _               | EXCLK           | AS2      | - TCN20B              | OCR2AUB            | OCR2BUB     | TCR2AUB<br>-  | TCR2BUB<br>-  | 164        |
| (0xB3)<br>(0xB4) | OCR2B                | -               | -               |          | ner/Counter2 Outp     |                    |             | _             | -             | 162        |
| (0xB3)           | OCR2A                |                 |                 |          | mer/Counter2 Outp     | 1 0                |             |               |               | 162        |
| (0xB2)           | TCNT2                |                 |                 |          |                       | inter2 (8-bit)     |             |               |               | 162        |
| (0xB1)           | TCCR2B               | FOC2A           | FOC2B           | -        | -                     | WGM22              | CS22        | CS21          | CS20          | 161        |
| (0xB0)           | TCCR2A               | COM2A1          | COM2A0          | COM2B1   | COM2B0                | -                  | -           | WGM21         | WGM20         | 158        |
| (0xAF)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xAE)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xAD)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xAC)           | Reserved             | _               | -               | -        | -                     | -                  | _           | -             | -             |            |
| (0xAB)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xAA)           | Reserved             | _               | -               | -        | -                     | -                  | _           | -             | -             |            |
| (0xA9)<br>(0xA8) | Reserved<br>Reserved | -               | -               | -        | -                     | -                  |             | -             | -             |            |
| (0xA8)<br>(0xA7) | Reserved             |                 | _               |          | _                     |                    |             | _             | _             |            |
| (0xA6)           | Reserved             |                 | _               | _        | _                     | _                  |             | _             | _             |            |
| (0xA5)           | Reserved             | _               | _               | _        | _                     | _                  | _           | _             | _             |            |
| (0xA4)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xA3)           | Reserved             | _               | -               | _        | _                     | _                  | _           | _             | _             |            |
| (0xA2)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xA1)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0xA0)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x9F)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x9E)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x9D)           | Reserved             | -               | -               | -        | _                     | -                  | _           | -             | _             |            |
| (0x9C)<br>(0x9B) | Reserved<br>Reserved |                 |                 | _        | _                     |                    |             | _             |               |            |
| (0x9A)           | Reserved             |                 | _               | _        | _                     | _                  |             | _             | _             |            |
| (0x99)           | Reserved             | _               | _               | _        | _                     | _                  | _           | _             | _             |            |
| (0x98)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x97)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x96)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x95)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x94)           | Reserved             | _               | -               | -        | -                     | -                  | _           | -             | -             |            |
| (0x93)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x92)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x91)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             |            |
| (0x90)           | Reserved             | -               | -               | -        | -                     |                    | -           | -             | -             |            |
| (0x8F)<br>(0x8E) | Reserved<br>Reserved | _               | -               | _        | -                     | -                  | _           | _             | -             |            |
| (0x8E)<br>(0x8D) | Reserved             |                 | _               | _        |                       | _                  |             |               |               |            |
| (0x8C)           | Reserved             | _               | _               | _        | _                     | _                  | _           | _             | _             |            |
| (0x8B)           | OCR1BH               |                 |                 |          | ounter1 - Output Co   |                    |             |               |               | 138        |
| (0x8A)           | OCR1BL               |                 |                 |          | ounter1 - Output C    |                    |             |               |               | 138        |
| (0x89)           | OCR1AH               |                 |                 | Timer/Co | ounter1 - Output Co   | ompare Register A  | A High Byte |               |               | 138        |
| (0x88)           | OCR1AL               |                 |                 | Timer/C  | ounter1 - Output C    | ompare Register    | A Low Byte  |               |               | 138        |
| (0x87)           | ICR1H                |                 |                 | Timer    | /Counter1 - Input C   | apture Register H  | ligh Byte   |               |               | 139        |
| (0x86)           | ICR1L                |                 |                 |          | Counter1 - Input C    |                    |             |               |               | 139        |
| (0x85)           | TCNT1H               |                 |                 |          | ner/Counter1 - Cou    |                    |             |               |               | 138        |
| (0x84)           | TCNT1L               |                 |                 |          | ner/Counter1 - Cou    |                    |             |               |               | 138        |
| (0x83)           | Reserved             | -               | -               | -        | -                     | -                  | -           | -             | -             | 407        |
| (0x82)           | TCCR1C               | FOC1A           | FOC1B           | -        | -<br>WGM13            | -<br>WGM12         | -           | -             | -             | 137        |
| (0x81)<br>(0x80) | TCCR1B<br>TCCR1A     | ICNC1<br>COM1A1 | ICES1<br>COM1A0 | COM1B1   | WGM13<br>COM1B0       | WGM12<br>-         | CS12<br>-   | CS11<br>WGM11 | CS10<br>WGM10 | 136<br>134 |
| (0x80)<br>(0x7F) | DIDR1                |                 | -               |          |                       | _                  |             | AIN1D         | AINOD         | 250        |
| (0/11)           | DIDR1                | _               | _               | ADC5D    | ADC4D                 | ADC3D              | ADC2D       | ADC1D         | ADCOD         | 250        |



| Address     | Name     | Bit 7   | Bit 6                 | Bit 5   | Bit 4                  | Bit 3             | Bit 2                | Bit 1    | Bit 0     | Page     |
|-------------|----------|---------|-----------------------|---------|------------------------|-------------------|----------------------|----------|-----------|----------|
| (0x7D)      | Reserved | _       | _                     | _       | _                      | _                 | _                    | _        | _         | - 3      |
| (0x7C)      | ADMUX    | REFS1   | REFS0                 | ADLAR   | _                      | MUX3              | MUX2                 | MUX1     | MUX0      | 263      |
| (0x7B)      | ADCSRB   | -       | ACME                  | -       | _                      | -                 | ADTS2                | ADTS1    | ADTS0     | 266      |
| (0x7A)      | ADCSRA   | ADEN    | ADSC                  | ADATE   | ADIF                   | ADIE              | ADPS2                | ADPS1    | ADPS0     | 264      |
| (0x79)      | ADCH     |         |                       |         |                        | gister High byte  |                      |          |           | 266      |
| (0x78)      | ADCL     |         |                       |         |                        | gister Low byte   |                      |          |           | 266      |
| (0x77)      | Reserved | -       | -                     | -       | -                      | _                 | -                    | -        | -         |          |
| (0x76)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x75)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x74)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x73)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x72)      | Reserved | -       | -                     | -       | -                      | _                 | -                    | -        | -         |          |
| (0x71)      | Reserved | -       | -                     | -       | -                      | _                 | -                    | -        | -         |          |
| (0x70)      | TIMSK2   | -       | -                     | -       | -                      | _                 | OCIE2B               | OCIE2A   | TOIE2     | 163      |
| (0x6F)      | TIMSK1   | -       | -                     | ICIE1   | -                      | -                 | OCIE1B               | OCIE1A   | TOIE1     | 139      |
| (0x6E)      | TIMSK0   | -       | -                     | -       | -                      | -                 | OCIE0B               | OCIE0A   | TOIE0     | 111      |
| (0x6D)      | PCMSK2   | PCINT23 | PCINT22               | PCINT21 | PCINT20                | PCINT19           | PCINT18              | PCINT17  | PCINT16   | 74       |
| (0x6C)      | PCMSK1   | -       | PCINT14               | PCINT13 | PCINT12                | PCINT11           | PCINT10              | PCINT9   | PCINT8    | 74       |
| (0x6B)      | PCMSK0   | PCINT7  | PCINT6                | PCINT5  | PCINT4                 | PCINT3            | PCINT2               | PCINT1   | PCINT0    | 74       |
| (0x6A)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x69)      | EICRA    | -       | -                     | -       | -                      | ISC11             | ISC10                | ISC01    | ISC00     | 71       |
| (0x68)      | PCICR    | -       | -                     | -       | -                      | -                 | PCIE2                | PCIE1    | PCIE0     |          |
| (0x67)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x66)      | OSCCAL   |         |                       |         | Oscillator Calib       | oration Register  |                      |          |           | 37       |
| (0x65)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x64)      | PRR      | PRTWI   | PRTIM2                | PRTIM0  | -                      | PRTIM1            | PRSPI                | PRUSART0 | PRADC     | 42       |
| (0x63)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x62)      | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| (0x61)      | CLKPR    | CLKPCE  | -                     | -       | -                      | CLKPS3            | CLKPS2               | CLKPS1   | CLKPS0    | 37       |
| (0x60)      | WDTCSR   | WDIF    | WDIE                  | WDP3    | WDCE                   | WDE               | WDP2                 | WDP1     | WDP0      | 54       |
| 0x3F (0x5F) | SREG     | I       | Т                     | Н       | S                      | V                 | N                    | Z        | С         | 9        |
| 0x3E (0x5E) | SPH      | -       | -                     | -       | -                      | -                 | (SP10) <sup>5.</sup> | SP9      | SP8       | 12       |
| 0x3D (0x5D) | SPL      | SP7     | SP6                   | SP5     | SP4                    | SP3               | SP2                  | SP1      | SP0       | 12       |
| 0x3C (0x5C) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x3B (0x5B) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x3A (0x5A) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x39 (0x59) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x38 (0x58) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x37 (0x57) | SPMCSR   | SPMIE   | (RWWSB) <sup>5.</sup> | -       | (RWWSRE) <sup>5.</sup> | BLBSET            | PGWRT                | PGERS    | SELFPRGEN | 293      |
| 0x36 (0x56) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x35 (0x55) | MCUCR    | -       | BODS                  | BODSE   | PUD                    | -                 | -                    | IVSEL    | IVCE      | 44/68/92 |
| 0x34 (0x54) | MCUSR    | -       | -                     | _       | -                      | WDRF              | BORF                 | EXTRF    | PORF      | 54       |
| 0x33 (0x53) | SMCR     | -       | -                     | _       | -                      | SM2               | SM1                  | SM0      | SE        | 40       |
| 0x32 (0x52) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x31 (0x51) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x30 (0x50) | ACSR     | ACD     | ACBG                  | ACO     | ACI                    | ACIE              | ACIC                 | ACIS1    | ACIS0     | 248      |
| 0x2F (0x4F) | Reserved | -       | -                     | -       | -                      | -                 | -                    | -        | -         |          |
| 0x2E (0x4E) | SPDR     |         |                       |         |                        | a Register        |                      |          |           | 175      |
| 0x2D (0x4D) | SPSR     | SPIF    | WCOL                  | -       | -                      | -                 | -                    | -        | SPI2X     | 174      |
| 0x2C (0x4C) | SPCR     | SPIE    | SPE                   | DORD    | MSTR                   | CPOL              | CPHA                 | SPR1     | SPR0      | 173      |
| 0x2B (0x4B) | GPIOR2   |         |                       |         |                        | se I/O Register 2 |                      |          |           | 25       |
| 0x2A (0x4A) | GPIOR1   |         |                       |         | General Purpos         | e I/O Register 1  |                      |          |           | 25       |
| 0x29 (0x49) | Reserved | -       | -                     | -       | -                      | -                 |                      | -        | -         |          |
| 0x28 (0x48) | OCR0B    |         |                       |         | mer/Counter0 Outp      |                   |                      |          |           |          |
| 0x27 (0x47) | OCR0A    |         |                       | Ti      | mer/Counter0 Outp      | · ·               | ster A               |          |           |          |
| 0x26 (0x46) | TCNT0    | FOCAL   | 50000                 |         |                        | nter0 (8-bit)     | 0000                 | 0001     | 0000      |          |
| 0x25 (0x45) | TCCR0B   | FOC0A   | FOCOB                 | -       | -                      | WGM02             | CS02                 | CS01     | CS00      |          |
| 0x24 (0x44) | TCCR0A   | COM0A1  | COM0A0                | COM0B1  | COM0B0                 | -                 | -                    | WGM01    | WGM00     | 440/105  |
| 0x23 (0x43) | GTCCR    | TSM     | -                     | -       |                        |                   | 5                    | PSRASY   | PSRSYNC   | 143/165  |
| 0x22 (0x42) | EEARH    |         |                       | (1      | EEPROM Address         |                   |                      |          |           | 21       |
| 0x21 (0x41) | EEARL    |         |                       |         | EEPROM Address         | · · · ·           | le                   |          |           | 21       |
| 0x20 (0x40) | EEDR     |         |                       |         |                        | ata Register      | FENSE                |          |           | 21       |
| 0x1F (0x3F) | EECR     | -       | -                     | EEPM1   | EEPM0                  | EERIE             | EEMPE                | EEPE     | EERE      | 21       |
| 0x1E (0x3E) | GPIOR0   |         |                       |         |                        | e I/O Register 0  |                      | 1177     | INITO     | 25       |
| 0x1D (0x3D) | EIMSK    | -       | -                     | -       | -                      | -                 | -                    | INT1     | INT0      | 72       |
| 0x1C (0x3C) | EIFR     | -       | -                     | -       | -                      | -                 | -                    | INTF1    | INTF0     | 72       |



# ATmega48P/88P/168P/328P

| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Page |
|-------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0x1B (0x3B) | PCIFR    | -      | -      | -      | -      | -      | PCIF2  | PCIF1  | PCIF0  |      |
| 0x1A (0x3A) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x19 (0x39) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x18 (0x38) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -      | -      | OCF2B  | OCF2A  | TOV2   | 163  |
| 0x16 (0x36) | TIFR1    | _      | -      | ICF1   | _      | _      | OCF1B  | OCF1A  | TOV1   | 140  |
| 0x15 (0x35) | TIFR0    | -      | -      | -      | -      | -      | OCF0B  | OCF0A  | TOV0   |      |
| 0x14 (0x34) | Reserved | _      | -      | -      | _      | _      | _      | -      | -      |      |
| 0x13 (0x33) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x12 (0x32) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x11 (0x31) | Reserved | -      | -      | -      | -      | _      | -      | -      | -      |      |
| 0x10 (0x30) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0F (0x2F) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0E (0x2E) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0D (0x2D) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0C (0x2C) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 | 93   |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4   | DDD3   | DDD2   | DDD1   | DDD0   | 93   |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4  | PIND3  | PIND2  | PIND1  | PIND0  | 93   |
| 0x08 (0x28) | PORTC    | -      | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 | 92   |
| 0x07 (0x27) | DDRC     | -      | DDC6   | DDC5   | DDC4   | DDC3   | DDC2   | DDC1   | DDC0   | 92   |
| 0x06 (0x26) | PINC     | -      | PINC6  | PINC5  | PINC4  | PINC3  | PINC2  | PINC1  | PINC0  | 92   |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 | 92   |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4   | DDB3   | DDB2   | DDB1   | DDB0   | 92   |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4  | PINB3  | PINB2  | PINB1  | PINB0  | 92   |
| 0x02 (0x22) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x01 (0x21) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0 (0x20)  | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48P/88P/168P/328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for ATmega88P/168P.





## 6. Instruction Set Summary

| Mnemonics           | Operands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                                     | Operation                                                                                              | Flags        | #Clocks           |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|-------------------|
| ARITHMETIC AND L    | OGIC INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                               |                                                                                                        |              | •                 |
| ADD                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Add two Registers                                               | $Rd \leftarrow Rd + Rr$                                                                                | Z,C,N,V,H    | 1                 |
| ADC                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Add with Carry two Registers                                    | $Rd \leftarrow Rd + Rr + C$                                                                            | Z,C,N,V,H    | 1                 |
| ADIW                | Rdl,K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add Immediate to Word                                           | $Rdh:Rdl \leftarrow Rdh:Rdl + K$                                                                       | Z,C,N,V,S    | 2                 |
| SUB                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtract two Registers                                          | Rd ← Rd - Rr                                                                                           | Z,C,N,V,H    | 1                 |
| SUBI                | Rd, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtract Constant from Register                                 | $Rd \leftarrow Rd - K$                                                                                 | Z,C,N,V,H    | 1                 |
| SBC                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subtract with Carry two Registers                               | $Rd \leftarrow Rd - Rr - C$                                                                            | Z,C,N,V,H    | 1                 |
| SBCI                | Rd, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtract with Carry Constant from Reg.                          | $Rd \leftarrow Rd - K - C$                                                                             | Z,C,N,V,H    | 1                 |
| SBIW                | Rdl,K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtract Immediate from Word                                    | Rdh:Rdl ← Rdh:Rdl - K                                                                                  | Z,C,N,V,S    | 2                 |
| AND                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Logical AND Registers                                           | $Rd \leftarrow Rd \bullet Rr$                                                                          | Z,N,V        | 1                 |
| ANDI                | Rd, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Logical AND Register and Constant                               | $Rd \leftarrow Rd \bullet K$                                                                           | Z,N,V        | 1                 |
| OR                  | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Logical OR Registers                                            | $Rd \leftarrow Rd \lor Rr$                                                                             | Z,N,V        | 1                 |
| ORI                 | Rd, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Logical OR Register and Constant                                | $Rd \leftarrow Rd \lor K$                                                                              | Z,N,V        | 1                 |
| EOR                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exclusive OR Registers                                          | $Rd \leftarrow Rd \oplus Rr$                                                                           | Z,N,V        | 1                 |
| COM                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | One's Complement                                                | $Rd \leftarrow 0xFF - Rd$                                                                              | Z,C,N,V      | 1                 |
| NEG                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Two's Complement                                                | Rd ← 0x00 – Rd                                                                                         | Z,C,N,V,H    | 1                 |
| SBR                 | Rd,K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Set Bit(s) in Register                                          | $Rd \leftarrow Rd \lor K$                                                                              | Z,N,V        | 1                 |
| CBR                 | Rd,K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Bit(s) in Register                                        | $Rd \leftarrow Rd \bullet (0xFF - K)$                                                                  | Z,N,V        | 1                 |
| INC                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Increment                                                       | $Rd \leftarrow Rd + 1$                                                                                 | Z,N,V        | 1                 |
| DEC                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Decrement                                                       | $Rd \leftarrow Rd - 1$                                                                                 | Z,N,V        | 1                 |
| TST                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test for Zero or Minus                                          | $Rd \leftarrow Rd \bullet Rd$                                                                          | Z,N,V        | 1                 |
| CLR                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clear Register                                                  | $Rd \leftarrow Rd \oplus Rd$                                                                           | Z,N,V        | 1                 |
| SER                 | Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Set Register                                                    | $Rd \leftarrow 0xFF$                                                                                   | None         | 1                 |
| MUL                 | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiply Unsigned                                               | $R1:R0 \leftarrow Rd x Rr$                                                                             | Z,C          | 2                 |
| MULS                | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiply Signed                                                 | $R1:R0 \leftarrow Rd x Rr$                                                                             | Z,C          | 2                 |
| MULSU               | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiply Signed with Unsigned                                   | $R1:R0 \leftarrow Rd \times Rr$                                                                        | Z,C          | 2                 |
| FMUL                | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fractional Multiply Unsigned                                    | $R1:R0 \leftarrow (Rd \times Rr) << 1$                                                                 | Z,C          | 2                 |
| FMULS               | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fractional Multiply Signed                                      | $R1:R0 \leftarrow (Rd \times Rr) << 1$                                                                 | Z,C          | 2                 |
| FMULSU              | Rd, Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fractional Multiply Signed with Unsigned                        | $R1:R0 \leftarrow (Rd x Rr) << 1$                                                                      | Z,C          | 2                 |
| BRANCH INSTRUC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                          |                                                                                                        |              |                   |
| RJMP                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relative Jump                                                   | $PC \leftarrow PC + k + 1$                                                                             | None         | 2                 |
| IJMP                | N. Contraction of the second s | Indirect Jump to (Z)                                            | $PC \leftarrow Z$                                                                                      | None         | 2                 |
| JMP <sup>(1)</sup>  | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Jump                                                     | $PC \leftarrow k$                                                                                      | None         | 3                 |
| RCALL               | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relative Subroutine Call                                        | $PC \leftarrow PC + k + 1$                                                                             | None         | 3                 |
| ICALL               | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indirect Call to (Z)                                            | $PC \leftarrow Z$                                                                                      | None         | 3                 |
| CALL <sup>(1)</sup> | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Subroutine Call                                          | $PC \leftarrow k$                                                                                      | None         | 4                 |
| RET                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subroutine Return                                               | PC ← STACK                                                                                             | None         | 4                 |
| RETI                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interrupt Return                                                | PC ← STACK                                                                                             |              | 4                 |
| CPSE                | Rd,Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compare, Skip if Equal                                          | if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$                                                      | None         | 1/2/3             |
| CP                  | Rd,Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compare                                                         | Rd – Rr                                                                                                | Z, N,V,C,H   | 1                 |
| CPC                 | Rd,Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compare with Carry                                              | Rd – Rr – C                                                                                            | Z, N,V,C,H   | 1                 |
| CPI                 | Rd,K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Compare Register with Immediate                                 | Rd – K                                                                                                 | Z, N,V,C,H   | 1                 |
| SBRC                | Rr, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skip if Bit in Register Cleared                                 | if (Rr(b)=0) PC $\leftarrow$ PC + 2 or 3                                                               | None         | 1/2/3             |
| SBRS                | Rr, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skip if Bit in Register cleared                                 | if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$<br>if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ | None         | 1/2/3             |
| SBIC                | P, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |              | 1/2/3             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skip if Bit in I/O Register Cleared                             | if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$<br>if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$   | None         |                   |
| SBIS                | P, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Skip if Bit in I/O Register is Set<br>Branch if Status Flag Set | if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$<br>if $(SREG(s) = 1)$ then $PC \leftarrow PC+k + 1$   | None         | 1/2/3<br>1/2      |
| BRBS<br>BRBC        | s, k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Branch if Status Flag Cleared                                   | if (SREG(s) = 1) then $PC \leftarrow PC+k + 1$<br>if (SREG(s) = 0) then $PC \leftarrow PC+k + 1$       | None<br>None | 1/2               |
|                     | s, k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Branch if Equal                                                 | if $(Z = 1)$ then PC $\leftarrow$ PC + k + 1                                                           |              |                   |
| BREQ<br>BRNE        | k<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Branch if Equal<br>Branch if Not Equal                          | if (Z = 1) then PC $\leftarrow$ PC + k + 1<br>if (Z = 0) then PC $\leftarrow$ PC + k + 1               | None<br>None | 1/2<br>1/2        |
| BRCS                | k k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Branch if Carry Set                                             | If $(Z = 0)$ then PC $\leftarrow$ PC + k + 1<br>if $(C = 1)$ then PC $\leftarrow$ PC + k + 1           |              | 1/2               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                        | None         |                   |
| BRCC                | k<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Branch if Carry Cleared                                         | if (C = 0) then PC $\leftarrow$ PC + k + 1<br>if (C = 0) then PC $\leftarrow$ PC + k + 1               | None         | 1/2               |
| BRSH                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Branch if Same or Higher                                        | if (C = 0) then PC $\leftarrow$ PC + k + 1<br>if (C = 1) then PC $\leftarrow$ PC + k + 1               | None         | 1/2               |
| BRLO                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Lower                                                 | if (C = 1) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
| BRMI                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Minus                                                 | if (N = 1) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
| BRPL                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Plus                                                  | if (N = 0) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
| BRGE                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Greater or Equal, Signed                              | if $(N \oplus V = 0)$ then PC $\leftarrow$ PC + k + 1                                                  | None         | 1/2               |
| BRLT                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Less Than Zero, Signed                                | if (N $\oplus$ V= 1) then PC $\leftarrow$ PC + k + 1                                                   | None         | 1/2               |
| BRHS                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Half Carry Flag Set                                   | if (H = 1) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
| BRHC                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if Half Carry Flag Cleared                               | if (H = 0) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
|                     | 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Branch if T Flag Set                                            | if (T = 1) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
| BRTS                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                                        |              |                   |
| BRTC                | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Branch if T Flag Cleared                                        | if (T = 0) then PC $\leftarrow$ PC + k + 1                                                             | None         | 1/2               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                        |              | 1/2<br>1/2<br>1/2 |

| Mnemonics        | Operands     | Description                                    | Operation                                                          | Flags    | #Clocks |
|------------------|--------------|------------------------------------------------|--------------------------------------------------------------------|----------|---------|
| BRIE             | k            | Branch if Interrupt Enabled                    | if (I = 1) then PC $\leftarrow$ PC + k + 1                         | None     | 1/2     |
| BRID             | k            | Branch if Interrupt Disabled                   | if (I = 0) then PC $\leftarrow$ PC + k + 1                         | None     | 1/2     |
| BIT AND BIT-TEST | INSTRUCTIONS |                                                |                                                                    |          |         |
| SBI              | P,b          | Set Bit in I/O Register                        | I/O(P,b) ← 1                                                       | None     | 2       |
| CBI              | P,b          | Clear Bit in I/O Register                      | I/O(P,b) ← 0                                                       | None     | 2       |
| LSL              | Rd           | Logical Shift Left                             | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                     | Z,C,N,V  | 1       |
| LSR              | Rd           | Logical Shift Right                            | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$                     | Z,C,N,V  | 1       |
| ROL              | Rd           | Rotate Left Through Carry                      | $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$ | Z,C,N,V  | 1       |
| ROR              | Rd           | Rotate Right Through Carry                     | $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$ | Z,C,N,V  | 1       |
| ASR              | Rd           | Arithmetic Shift Right                         | $Rd(n) \leftarrow Rd(n+1), n=06$                                   | Z,C,N,V  | 1       |
| SWAP             | Rd           | Swap Nibbles                                   | Rd(30)←Rd(74),Rd(74)←Rd(30)                                        | None     | 1       |
| BSET             | s            | Flag Set                                       | $SREG(s) \leftarrow 1$                                             | SREG(s)  | 1       |
| BCLR             | S            | Flag Clear                                     | $SREG(s) \leftarrow 0$                                             | SREG(s)  | 1       |
| BST              | Rr, b        | Bit Store from Register to T                   | $T \leftarrow Rr(b)$                                               | Т        | 1       |
| BLD              | Rd, b        | Bit load from T to Register                    | $Rd(b) \leftarrow T$                                               | None     | 1       |
| SEC              |              | Set Carry                                      | C ← 1                                                              | С        | 1       |
| CLC              |              | Clear Carry                                    | C ← 0                                                              | С        | 1       |
| SEN              |              | Set Negative Flag                              | N ← 1                                                              | N        | 1       |
| CLN              | +            | Clear Negative Flag                            | N ← 0                                                              | N        | 1       |
| SEZ              |              | Set Zero Flag                                  | Z ← 1                                                              | Z        | 1       |
| CLZ              |              | Clear Zero Flag                                | Z ~ 0                                                              | Z        | 1       |
| SEI              |              | Global Interrupt Enable                        |                                                                    | 1        | 1       |
| CLI              |              | Global Interrupt Disable                       |                                                                    |          | 1       |
| SES              |              | Set Signed Test Flag                           | S ← 1                                                              | S        | 1       |
| CLS              |              | Clear Signed Test Flag                         | S ← 0                                                              | S        | 1       |
| SEV              |              | Set Twos Complement Overflow.                  | V ← 1                                                              | V        | 1       |
| CLV              |              | Clear Twos Complement Overflow                 | V ← 0                                                              | T        | 1       |
| SET              |              | Set T in SREG                                  | T ← 1                                                              | <u>т</u> | 1       |
| CLT<br>SEH       |              | Clear T in SREG<br>Set Half Carry Flag in SREG | $T \leftarrow 0$                                                   | Н        | 1       |
| CLH              |              | Clear Half Carry Flag in SREG                  | H ← 1<br>H ← 0                                                     | н        | 1       |
| DATA TRANSFER I  | NSTRUCTIONS  | Clear Hair Carry Hag in SICEG                  | II ← 0                                                             | 11       |         |
| MOV              | Rd, Rr       | Move Between Registers                         | Rd ← Rr                                                            | None     | 1       |
| MOVW             | Rd, Rr       | Copy Register Word                             | $Rd \leftarrow Rr$ +1: $Rr$                                        | None     | 1       |
| LDI              | Rd, K        | Load Immediate                                 | $Rd \leftarrow K$                                                  | None     | 1       |
| LD               | Rd, X        | Load Indirect                                  | $Rd \leftarrow (X)$                                                | None     | 2       |
| LD               | Rd, X+       | Load Indirect and Post-Inc.                    | $Rd \leftarrow (X), X \leftarrow X + 1$                            | None     | 2       |
| LD               | Rd, - X      | Load Indirect and Pre-Dec.                     | $X \leftarrow X - 1, Rd \leftarrow (X)$                            | None     | 2       |
| LD               | Rd, Y        | Load Indirect                                  | $Rd \leftarrow (Y)$                                                | None     | 2       |
| LD               | Rd, Y+       | Load Indirect and Post-Inc.                    | $Rd \leftarrow (Y), Y \leftarrow Y + 1$                            | None     | 2       |
| LD               | Rd, - Y      | Load Indirect and Pre-Dec.                     | $Y \leftarrow Y - 1$ , Rd $\leftarrow$ (Y)                         | None     | 2       |
| LDD              | Rd,Y+q       | Load Indirect with Displacement                | $Rd \leftarrow (Y + q)$                                            | None     | 2       |
| LD               | Rd, Z        | Load Indirect                                  | $Rd \leftarrow (Z)$                                                | None     | 2       |
| LD               | Rd, Z+       | Load Indirect and Post-Inc.                    | $Rd \leftarrow (Z), Z \leftarrow Z+1$                              | None     | 2       |
| LD               | Rd, -Z       | Load Indirect and Pre-Dec.                     | $Z \leftarrow Z - 1, Rd \leftarrow (Z)$                            | None     | 2       |
| LDD              | Rd, Z+q      | Load Indirect with Displacement                | $Rd \leftarrow (Z + q)$                                            | None     | 2       |
| LDS              | Rd, k        | Load Direct from SRAM                          | $Rd \leftarrow (k)$                                                | None     | 2       |
| ST               | X, Rr        | Store Indirect                                 | $(X) \leftarrow Rr$                                                | None     | 2       |
| ST               | X+, Rr       | Store Indirect and Post-Inc.                   | $(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$             | None     | 2       |
| ST               | - X, Rr      | Store Indirect and Pre-Dec.                    | $X \leftarrow X - 1, (X) \leftarrow Rr$                            | None     | 2       |
| ST               | Y, Rr        | Store Indirect                                 | (Y) ← Rr                                                           | None     | 2       |
| ST               | Y+, Rr       | Store Indirect and Post-Inc.                   | $(Y) \leftarrow Rr, Y \leftarrow Y + 1$                            | None     | 2       |
| ST               | - Y, Rr      | Store Indirect and Pre-Dec.                    | $Y \leftarrow Y - 1$ , (Y) $\leftarrow Rr$                         | None     | 2       |
| STD              | Y+q,Rr       | Store Indirect with Displacement               | $(Y + q) \leftarrow Rr$                                            | None     | 2       |
| ST               | Z, Rr        | Store Indirect                                 | $(Z) \leftarrow Rr$                                                | None     | 2       |
| ST               | Z+, Rr       | Store Indirect and Post-Inc.                   | $(Z) \leftarrow Rr, Z \leftarrow Z + 1$                            | None     | 2       |
| ST               | -Z, Rr       | Store Indirect and Pre-Dec.                    | $Z \leftarrow Z - 1, (Z) \leftarrow Rr$                            | None     | 2       |
| STD              | Z+q,Rr       | Store Indirect with Displacement               | $(Z + q) \leftarrow Rr$                                            | None     | 2       |
| STS              | k, Rr        | Store Direct to SRAM                           | (k) ← Rr                                                           | None     | 2       |
| LPM              |              | Load Program Memory                            | $R0 \leftarrow (Z)$                                                | None     | 3       |
| LPM              | Rd, Z        | Load Program Memory                            | $Rd \leftarrow (Z)$                                                | None     | 3       |
| LPM              | Rd, Z+       | Load Program Memory and Post-Inc               | $Rd \leftarrow (Z), Z \leftarrow Z+1$                              | None     | 3       |
| SPM              |              | Store Program Memory                           | (Z) ← R1:R0                                                        | None     | -       |
| IN               | Rd, P        | In Port                                        | $Rd \leftarrow P$                                                  | None     | 1       |
| OUT              | P, Rr        | Out Port                                       | P ← Rr                                                             | None     | 1       |
| PUSH             | Rr           | Push Register on Stack                         | $STACK \leftarrow Rr$                                              | None     | 2       |





| Mnemonics       | Operands  | Description             | Operation                                | Flags | #Clocks |
|-----------------|-----------|-------------------------|------------------------------------------|-------|---------|
| POP             | Rd        | Pop Register from Stack | $Rd \leftarrow STACK$                    | None  | 2       |
| MCU CONTROL INS | TRUCTIONS |                         |                                          |       |         |
| NOP             |           | No Operation            |                                          | None  | 1       |
| SLEEP           |           | Sleep                   | (see specific descr. for Sleep function) | None  | 1       |
| WDR             |           | Watchdog Reset          | (see specific descr. for WDR/timer)      | None  | 1       |
| BREAK           |           | Break                   | For On-chip Debug Only                   | None  | N/A     |

Note: 1. These instructions are only available in ATmega168P and ATmega328P.

## 7. Ordering Information

## 7.1 ATmega48P

| Speed (MHz)       | Power Supply | Ordering Code <sup>(2)</sup> | Package <sup>(1)</sup> | Operational Range |
|-------------------|--------------|------------------------------|------------------------|-------------------|
|                   |              | ATmega48PV-10AU              | 32A                    |                   |
| 10 <sup>(3)</sup> | 1.8 - 5.5    | ATmega48PV-10MMU             | 28M1                   | Industrial        |
| 10(**             |              | ATmega48PV-10MU              | 32M1-A                 | (-40°C to 85°C)   |
|                   |              | ATmega48PV-10PU              | 28P3                   |                   |
|                   |              | ATmega48P-20AU               | 32A                    |                   |
| 20 <sup>(3)</sup> |              | ATmega48P-20MMU              | 28M1                   | Industrial        |
| 20(3)             | 2.7 - 5.5    | ATmega48P-20MU               | 32M1-A                 | (-40°C to 85°C)   |
|                   |              | ATmega48P-20PU               | 28P3                   |                   |

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 28-1 on page 317 and Figure 28-2 on page 318.

|        | Package Type                                                                                      |
|--------|---------------------------------------------------------------------------------------------------|
| 32A    | 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)                                           |
| 28M1   | 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |
| 32M1-A | 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |
| 28P3   | 28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)                                          |





## 7.2 ATmega88P

| Speed (MHz)       | Power Supply | Ordering Code <sup>(2)</sup>                          | Package <sup>(1)</sup> | Operational Range             |
|-------------------|--------------|-------------------------------------------------------|------------------------|-------------------------------|
| 10 <sup>(3)</sup> | 1.8 - 5.5    | ATmega88PV-10AU<br>ATmega88PV-10MU<br>ATmega88PV-10PU | 32A<br>32M1-A<br>28P3  | Industrial<br>(-40°C to 85°C) |
| 20 <sup>(3)</sup> | 2.7 - 5.5    | ATmega88P-20AU<br>ATmega88P-20MU<br>ATmega88P-20PU    | 32A<br>32M1-A<br>28P3  | Industrial<br>(-40°C to 85°C) |

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 28-1 on page 317 and Figure 28-2 on page 318.

|        | Package Type                                                                                      |
|--------|---------------------------------------------------------------------------------------------------|
| 32A    | 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)                                           |
| 28P3   | 28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)                                          |
| 32M1-A | 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |

# ATmega48P/88P/168P/328P

## 7.3 ATmega168P

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                             | Package <sup>(1)</sup> | Operational Range             |
|----------------------------|--------------|----------------------------------------------------------|------------------------|-------------------------------|
| 10                         | 1.8 - 5.5    | ATmega168PV-10AU<br>ATmega168PV-10MU<br>ATmega168PV-10PU | 32A<br>32M1-A<br>28P3  | Industrial<br>(-40°C to 85°C) |
| 20                         | 2.7 - 5.5    | ATmega168P-20AU<br>ATmega168P-20MU<br>ATmega168P-20PU    | 32A<br>32M1-A<br>28P3  | Industrial<br>(-40°C to 85°C) |

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 28-1 on page 317 and Figure 28-2 on page 318.

| Package Type |                                                                                                   |  |
|--------------|---------------------------------------------------------------------------------------------------|--|
| 32A          | 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)                                           |  |
| 28P3         | 28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)                                          |  |
| 32M1-A       | 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |

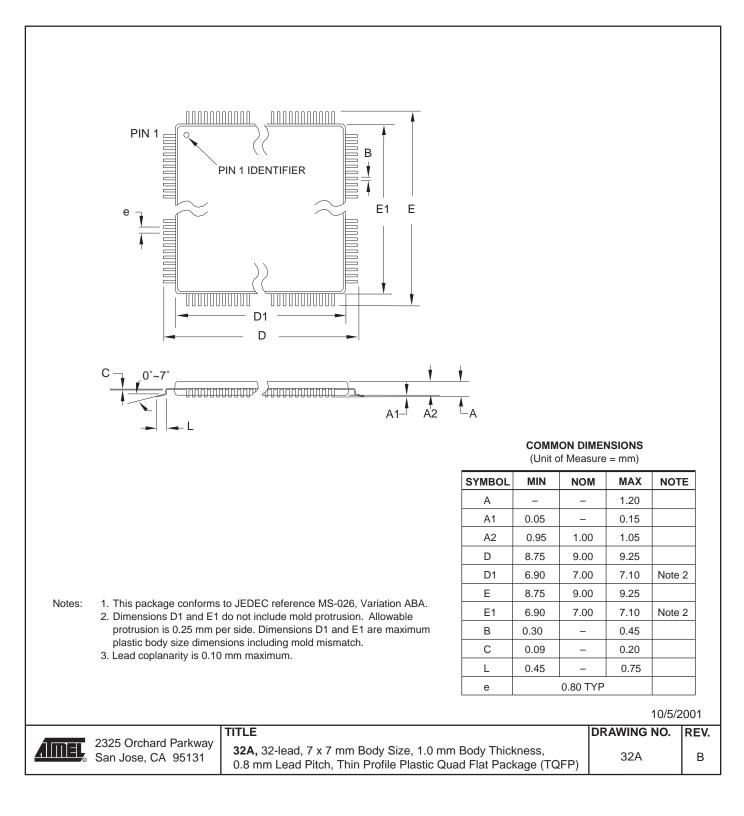




## 7.4 ATmega328P

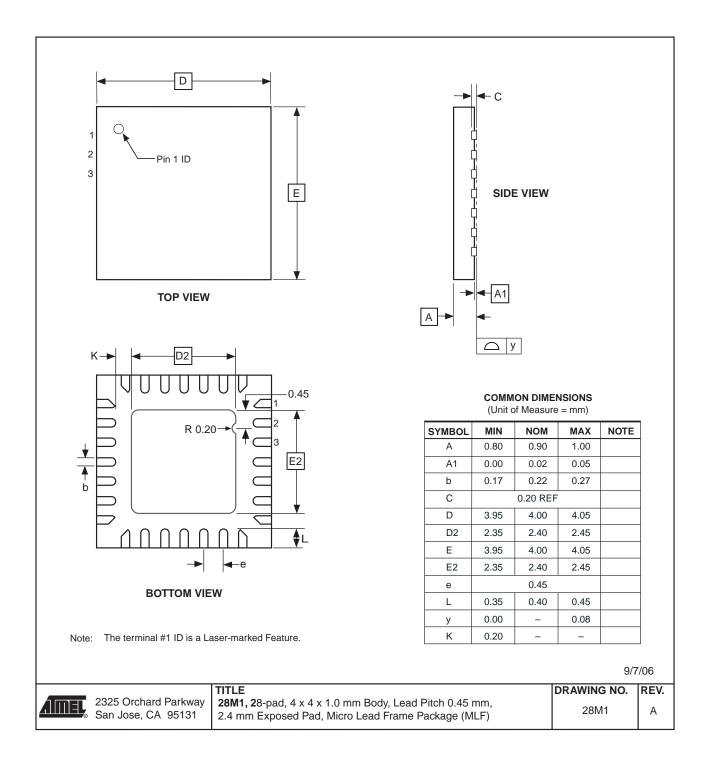
| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup> | Package <sup>(1)</sup> | Operational Range             |
|----------------------------|--------------|------------------------------|------------------------|-------------------------------|
| 20                         | 1.8 - 5.5    | ATmega328P- AU               | 32A                    | Industrial<br>(-40°C to 85°C) |
|                            |              | ATmega328P- MU               | 32M1-A                 |                               |
|                            |              | ATmega328P- PU               | 28P3                   |                               |

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

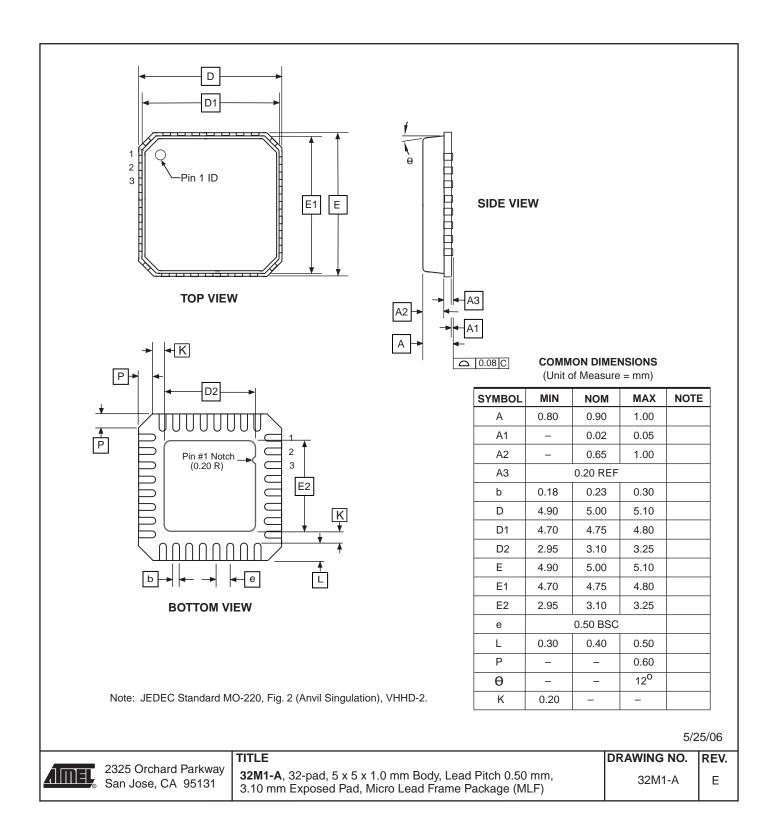

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 28-3 on page 318.

| Package Type |                                                                                                   |  |
|--------------|---------------------------------------------------------------------------------------------------|--|
| 32A          | 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)                                           |  |
| 28P3         | 28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)                                          |  |
| 32M1-A       | 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |


## 8. Packaging Information

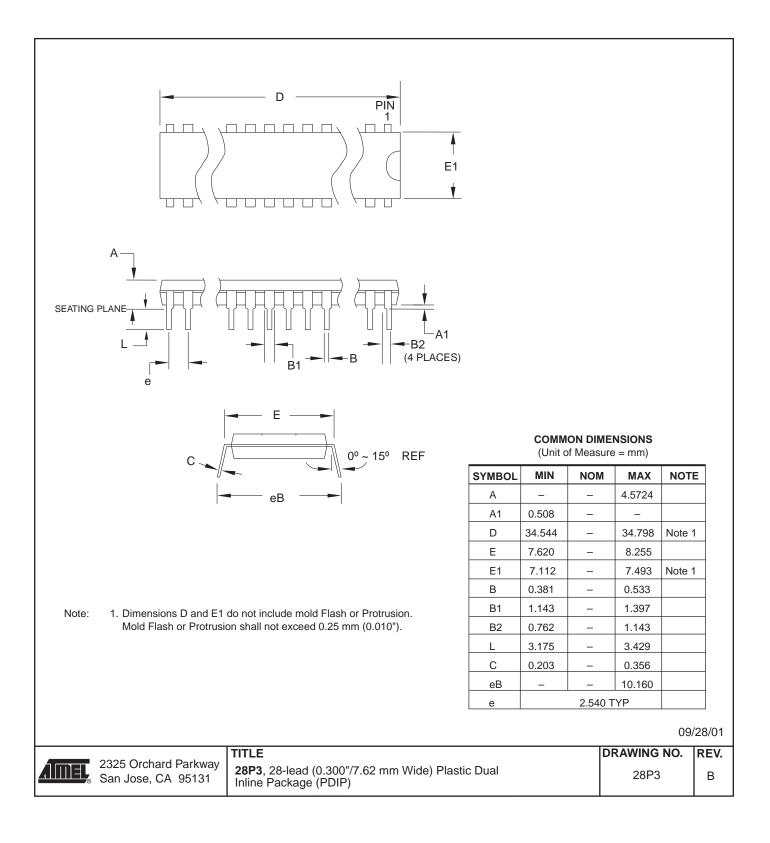
## 8.1 32A











8.3 32M1-A







## 8.4 28P3



## 9. Errata

## 9.1 Errata ATmega48P

The revision letter in this section refers to the revision of the ATmega48P device.

## 9.1.1 Rev. B

No known errata.

## 9.1.2 Rev. A

Not Sampled.

## 9.2 Errata ATmega88P

The revision letter in this section refers to the revision of the ATmega88P device.

### 9.2.1 Rev. A

No known errata.

## 9.3 Errata ATmega168P

The revision letter in this section refers to the revision of the ATmega168P device.

### 9.3.1 Rev A

No known errata.

## 9.4 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

### 9.4.1 Rev B

Unstable 32 kHz Oscillator

### 1. Unstable 32 kHz Oscillator

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

### **Problem Fix/ Workaround**

None

### 9.4.2 Rev A

No known errata.





## **10. Datasheet Revision History**

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

### 10.1 Rev. 2545F-08/08

- 1. Updated "ATmega328P Typical Characteristics" on page 401 with Power-save numbers.
- 2. Added ATmega328P "Standby Supply Current" on page 408.

### 10.2 Rev. 2545E-08/08

- 1. Updated description of "Stack Pointer" on page 12.
- 2. Updated description of use of external capacitors in "Low Frequency Crystal Oscillator" on page 32.
- 3. Updated Table 8-9 in "Low Frequency Crystal Oscillator" on page 32.
- 4. Added note to "Address Match Unit" on page 222.
- 5. Added section "Reading the Signature Row from Software" on page 286.
- 6. Updated "Program And Data Memory Lock Bits" on page 295 to include ATmega328P in the description.
- 7. Added "ATmega328P DC Characteristics" on page 317.
- 8. Updated "Speed Grades" on page 317 for ATmega328P.
- 9. Removed note 6 and 7 from the table "2-wire Serial Interface Characteristics" on page 323.
- 10. Added figure "Minimum Reset Pulse width vs. V<sub>CC</sub>." on page 352 for ATmega48P.
- 11. Added figure "Minimum Reset Pulse width vs. V<sub>CC</sub>." on page 376 for ATmega88P.
- 12. Added figure "Minimum Reset Pulse width vs. V<sub>CC</sub>." on page 400 for ATmega168P.
- 13. Added "ATmega328P Typical Characteristics" on page 401.
- 14. Updated Ordering Information for "ATmega328P" on page 18.

### 10.3 Rev. 2545D-03/08

- 1. Updated figures in "Speed Grades" on page 317.
- 2. Updated note in Table 28-4 in "System and Reset Characteristics" on page 320.
- 3. Ordering codes for "ATmega328P" on page 18 updated.
  - ATmega328P is offered in 20 MHz option only.
- 4. Added Errata for ATmega328P rev. B, "Errata ATmega328P" on page 23.

### 10.4 Rev. 2545C-01/08

1. Power-save Maximum values removed form "ATmega48P DC Characteristics" on page 315, "ATmega88P DC Characteristics" on page 316, and "ATmega168P DC Characteristics" on page 316.

## 10.5 Rev. 2545B-01/08

- 1. Updated "Features" on page 1.
- 2. Added "Data Retention" on page 7.
- 3. Updated Table 8-2 on page 28.
- 4. Removed "Low-frequency Crystal Oscillator Internal Load Capacitance" table from"Low Frequency Crystal Oscillator" on page 32.
- 5. Removed JTD bit from "MCUCR MCU Control Register" on page 44.
  - Updated typical and general program setup for Reset and Interrupt Vector Addresses
- 6. in "Interrupt Vectors in ATmega168P" on page 62 and "Interrupt Vectors in ATmega328P" on page 65.
- 7. Updated Interrupt Vectors Start Address in Table 11-5 on page 63 and Table 11-7 on page 66.
- 8. Updated "Temperature Measurement" on page 262.
- 9. Updated ATmega328P "Fuse Bits" on page 296.
- 10. Removed V<sub>OL3</sub>/V<sub>OH3</sub> rows from "DC Characteristics" on page 314.
- 11. Updated condition for  $V_{OL}$  in "DC Characteristics" on page 314.

Updated max value for  $V_{IL2}$  in "DC Characteristics" on page 314.

- Added "ATmega48P DC Characteristics" on page 315, "ATmega88P DC Characteris-
- tics" on page 316, and "ATmega168P DC Characteristics" on page 316.
- 13. Updated "System and Reset Characteristics" on page 320.
  - Added "ATmega48P Typical Characteristics" on page 329, "ATmega88P Typical
- 14. Characteristics" on page 353, and "ATmega168P Typical Characteristics" on page 377.
- 15. Updated note in "Instruction Set Summary" on page 12.

## 10.6 Rev. 2545A-07/07

1. Initial revision.





#### Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

#### Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel<sup>®</sup>, logo and combinations thereof, AVR<sup>®</sup> and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.