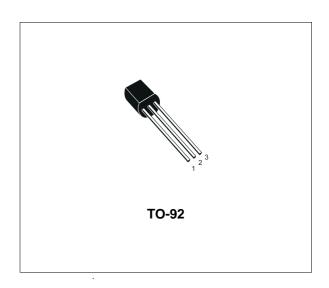
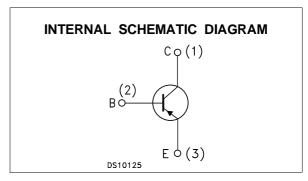


SMALL SIGNAL PNP TRANSISTOR


Туре	Marking
BC557B	BC557B


- SILICON EPITAXIAL PLANAR PNP TRANSISTOR
- TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY
- THE NPN COMPLEMENTARY TYPE IS BC547B

•

APPLICATIONS

- WELL SUITABLE FOR TV AND HOME APPLIANCE EQUIPMENT
- SMALL LOAD SWITCH TRANSISTOR WITH HIGH GAIN AND LOW SATURATION VOLTAGE

ABSOLUTE MAXIMUM RATINGS

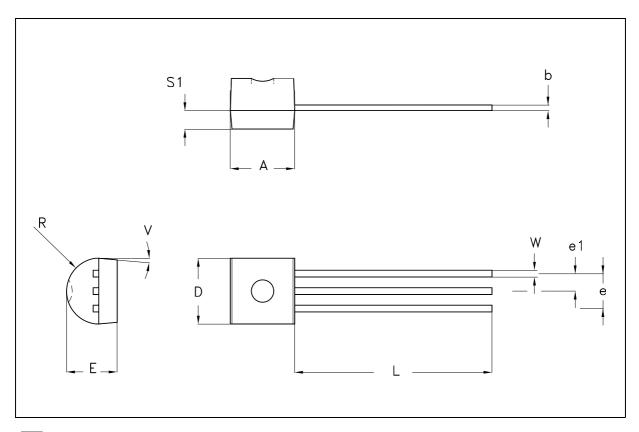
Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage (I _E = 0)	-50	٧
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	-45	٧
VEBO	Emitter-Base Voltage (Ic = 0)	-5	٧
Ic	Collector Current	-100	mΑ
I _{CM}	Collector Peak Current	-200	mΑ
P _{tot}	Total Dissipation at T _C = 25 °C	500	mW
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

January 2003 1/4

THERMAL DATA

F	R _{thj-amb} •	Thermal	Resistance	Junction-Ambient	Max	250	°C/W	
F	R _{thj-Case} •	Thermal	Resistance	Junction-Case	Max	83.3	°C/W	

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)


Symbol Parameter		Test Conditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)	V _{CB} = -30 V V _{CB} = -30 V T _C = 150 °C		-1	-15 -4	nA μA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = -5 V			-100	nA
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	Ic = -10 mA	-45			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	$I_{C} = -10 \text{ mA}$ $I_{B} = -0.5 \text{ mA}$ $I_{C} = -100 \text{ mA}$ $I_{B} = -5 \text{ mA}$		-0.06 0.18	-0.3 -0.65	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = -10 \text{ mA}$ $I_{B} = -0.5 \text{ mA}$ $I_{C} = -100 \text{ mA}$ $I_{B} = -5 \text{ mA}$		-0.75 -0.93		V V
$V_{BE(on)^*}$	Base-Emitter On Voltage	$I_C = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ $I_C = -10 \text{ mA}$ $V_{CE} = -5 \text{ V}$	-0.6	-0.65	-0.75 -0.82	V V
h _{FE}	DC Current Gain	$I_C = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$	220		475	
f⊤	Transition Frequency	$I_C = -10 \text{ mA } V_{CE} = -5 \text{ V } f = 100 \text{MHz}$	100			MHz
Ссво	Collector-Base Capacitance	I _E = 0 V _{CB} = -10 V f = 1 MHz		3		pF
СЕВО	Emitter-Base Capacitance	I _C = 0 V _{EB} = -0.5 V f = 1 MHz		10		pF
NF	Noise Figure	$V_{CE} = -5 \text{ V} I_{C} = -200 \ \mu\text{A} f = 1 \text{KHz}$ $\Delta f = 200 \ \text{Hz} R_{G} = 2 \ \text{K}\Omega$		2	10	dB

^{*} Pulsed: Pulse duration = 300 μ s, duty cycle \leq 2 %

2/4

TO-92 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.32		4.95	0.170		0.195	
b	0.36		0.51	0.014		0.020	
D	4.45		4.95	0.175		0.194	
E	3.30		3.94	0.130		0.155	
е	2.41		2.67	0.095		0.105	
e1	1.14		1.40	0.045		0.055	
L	12.70		15.49	0.500		0.609	
R	2.16		2.41	0.085		0.094	
S1	1.14		1.52	0.045		0.059	
W	0.41		0.56	0.016		0.022	
V	4 degree		6 degree	4 degree		6 degree	

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

47/

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.