
DISCRETE SEMICONDUCTORS

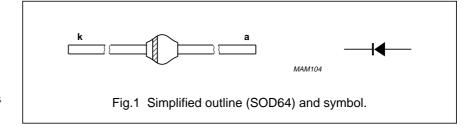
DATA SHEET

BYM36 series Fast soft-recovery controlled avalanche rectifiers

Product specification Supersedes data of 1996 May 30 1996 Sep 18

Fast soft-recovery controlled avalanche rectifiers

BYM36 series


FEATURES

- · Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack
- Also available with preformed leads for easy insertion.

DESCRIPTION

Rugged glass SOD64 package, using a high temperature alloyed construction.

This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage				
	BYM36A		_	200	V
	ВҮМ36В		_	400	V
	BYM36C		_	600	V
	BYM36D		_	800	V
	BYM36E		_	1000	V
	BYM36F		_	1200	V
	BYM36G		_	1400	V
V_R	continuous reverse voltage				
	BYM36A		_	200	V
	ВҮМ36В		_	400	V
	BYM36C		_	600	V
	BYM36D		_	800	V
	ВҮМ36Е		_	1000	V
	BYM36F		_	1200	V
	BYM36G		_	1400	V
I _{F(AV)}	average forward current	T _{tp} = 55 °C; lead length = 10 mm;			
	BYM36A to C	see Figs 2; 3 and 4	_	3.0	A
	BYM36D and E	averaged over any 20 ms period; see also Figs 14; 15 and 16	_	2.9	Α
	BYM36F and G	300 diso rigs 14, 10 and 10	_	2.9	A
I _{F(AV)}	average forward current	T _{amb} = 65 °C; PCB mounting (see			
	BYM36A to C	Fig.25); see Figs 5; 6 and 7	_	1.25	Α
	BYM36D and E	averaged over any 20 ms period; see also Figs 14; 15 and 16	_	1.20	Α
	BYM36F and G	300 also rigs 14, 10 and 10	_	1.15	A

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FRM}	repetitive peak forward current	T _{tp} = 55 °C; see Figs 8; 9 and 10			
	BYM36A to C		_	37	Α
	BYM36D and E		_	33	Α
	BYM36F and G		_	27	Α
I _{FRM}	repetitive peak forward current	T _{amb} = 65 °C; see Figs 11; 12 and 13			
	BYM36A to C		_	13	Α
	BYM36D and E		_	11	Α
	BYM36F and G		_	10	Α
I _{FSM}	non-repetitive peak forward current	$t = 10 \text{ ms half sine wave; } T_j = T_{j \text{ max}}$	_	65	Α
		prior to surge; $V_R = V_{RRMmax}$			
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j \text{ max}}$ prior to surge; inductive load switched off	_	10	mJ
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Figs 17 and 18	-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 3 A; T_j = T_{j max};$				
	BYM36A to C	see Figs 19; 20 and 21	_	_	1.22	V
	BYM36D and E		_	_	1.28	V
	BYM36F and G		_	_	1.24	V
V_{F}	forward voltage	I _F = 3 A;				
	BYM36A to C	see Figs 19; 20 and 21	_	_	1.60	V
	BYM36D and E		_	_	1.78	V
	BYM36F and G		_	_	1.57	V
$V_{(BR)R}$	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	ВҮМЗ6А		300	_	_	V
	BYM36B		500	_	_	V
	ВҮМ36С		700	_	_	V
	BYM36D		900	_	_	V
	ВҮМ36Е		1100	_	_	V
	BYM36F		1300	_	_	V
	BYM36G		1500	_	_	V
I _R	reverse current	$V_R = V_{RRMmax}$; see Fig.22	_	_	5	μΑ
		$V_R = V_{RRMmax};$ $T_j = 165$ °C; see Fig.22	_	_	150	μΑ

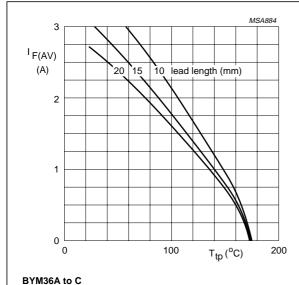
Fast soft-recovery controlled avalanche rectifiers

BYM36 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{rr}	reverse recovery time	when switched from				
	BYM36A to C	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	_	_	100	ns
	BYM36D and E	measured at $I_R = 0.25 A$; see Fig. 26	_	_	150	ns
	BYM36F and G	366 1g. 20	_	_	250	ns
C _d	diode capacitance	f = 1 MHz; V _R = 0 V;				
	BYM36A to C	see Figs 23 and 24	_	85	_	pF
	BYM36D and E		_	75	_	pF
	BYM36F and G		-	65	_	pF
$\frac{ dI_R }{dt}$	maximum slope of reverse recovery current	when switched from $I_F = 1 \text{ A to V}_R \ge 30 \text{ V and}$				
at	BYM36A to C	$dI_F/dt = -1 A/\mu s;$	_	_	7	A/μs
	BYM36D and E	see Fig.27	_	_	6	A/μs
	BYM36F and G		_	_	5	A/μs

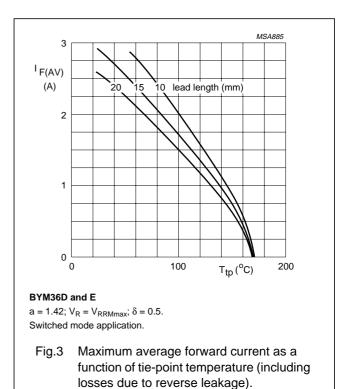
THERMAL CHARACTERISTICS

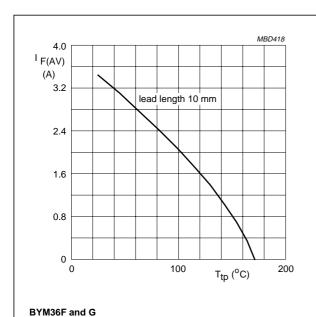
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	25	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	75	K/W


Note

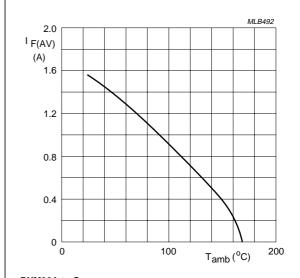
1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer \geq 40 μ m, see Fig.25. For more information please refer to the "General Part of associated Handbook".

Fast soft-recovery controlled avalanche rectifiers


BYM36 series

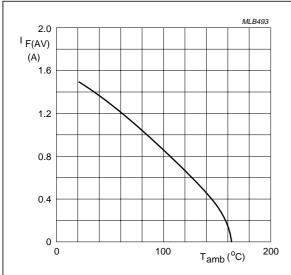

GRAPHICAL DATA

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$. Switched mode application.


Fig.2 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$. Switched mode application.

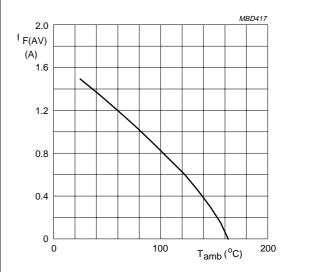
Fig.4 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).



BYM36A to C $a=1.42;\ V_R=V_{RRMmax};\ \delta=0.5.$ Device mounted as shown in Fig.25. Switched mode application.

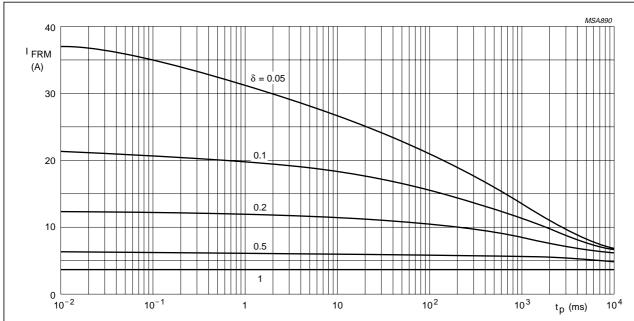
Fig.5 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

Fast soft-recovery controlled avalanche rectifiers


BYM36 series

BYM36D and E

 $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Device mounted as shown in Fig.25. Switched mode application.


Fig.6 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYM36F and G

 $a=1.42;\ V_R=V_{RRMmax},\ \delta=0.5.$ Device mounted as shown in Fig.25. Switched mode application.

Fig.7 Maximum average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYM36A to C

 $T_{tp} = 55^{\circ}\text{C}; \; R_{th \; j\text{-tp}} = 25 \; \text{K/W}.$

 V_{RRMmax} during 1 – δ ; curves include derating for $T_{j\,max}$ at V_{RRM} = 600 V.

Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

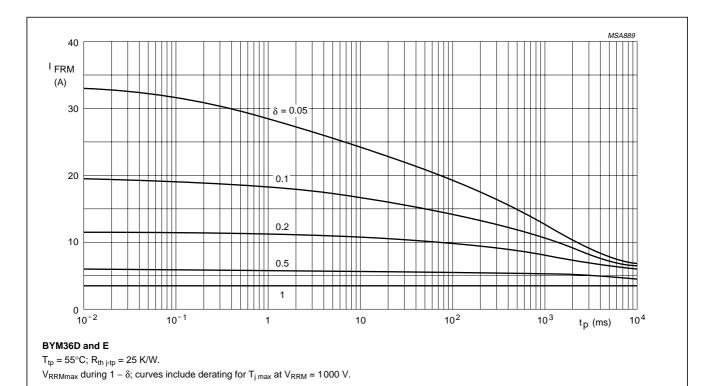
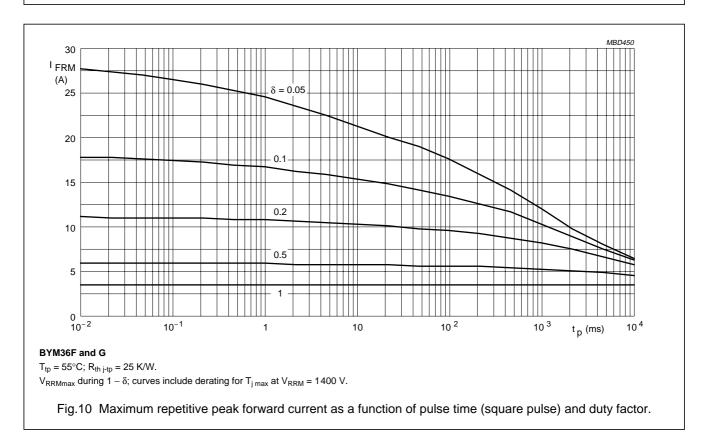



Fig.9 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

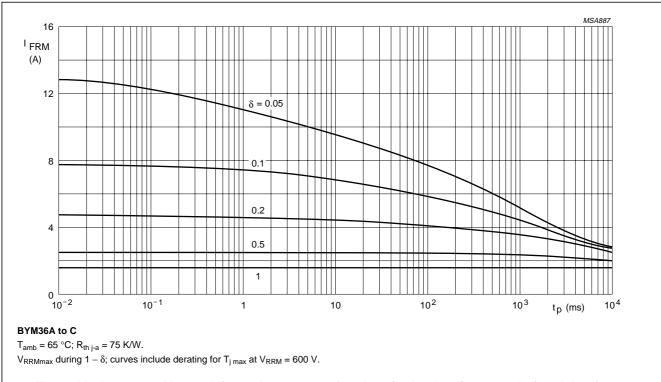
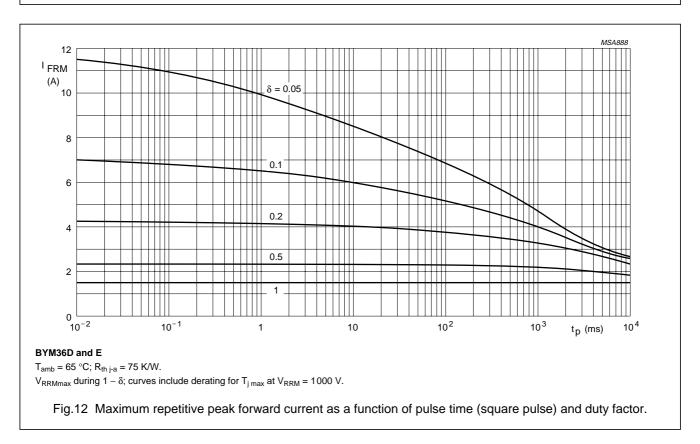



Fig.11 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

8

1996 Sep 18

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

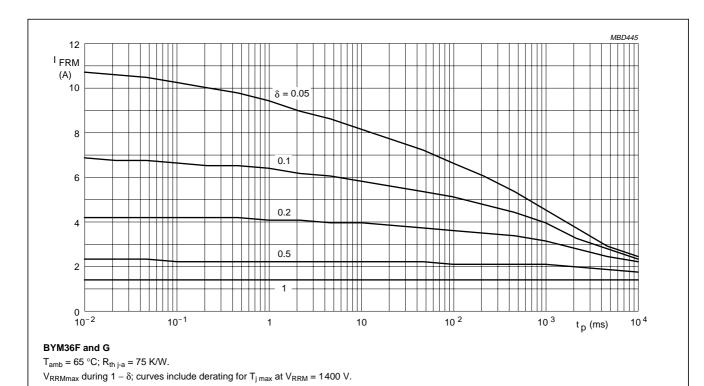


Fig.13 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

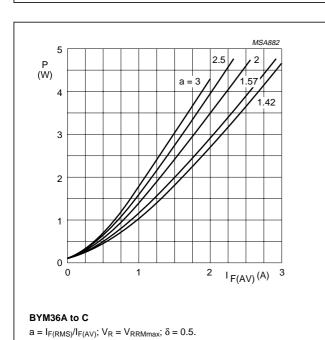


Fig.14 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

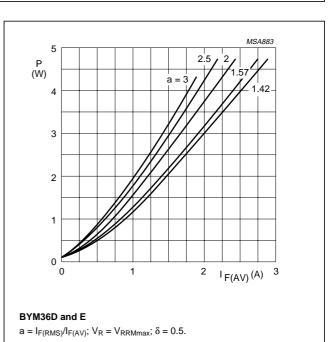
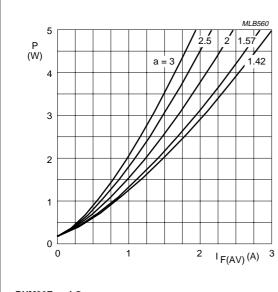



Fig.15 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

BYM36F and G

 $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RRMmax}; \ \delta = 0.5.$

Fig.16 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

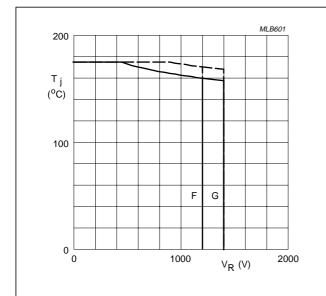
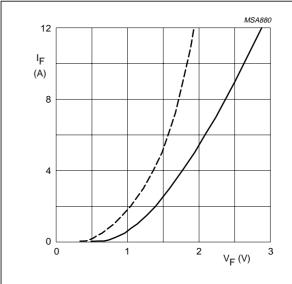



Fig.17 Maximum permissible junction temperature as a function of reverse voltage.



BYM36F and G

Solid line = V_R .

Dotted line = V_{RRM} ; $\delta = 0.5$.

Fig.18 Maximum permissible junction temperature as a function of reverse voltage.

BYM36A to C

Dotted line: $T_j = 175 \,^{\circ}\text{C}$. Solid line: $T_j = 25 \,^{\circ}\text{C}$.

Fig.19 Forward current as a function of forward voltage; maximum values.

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

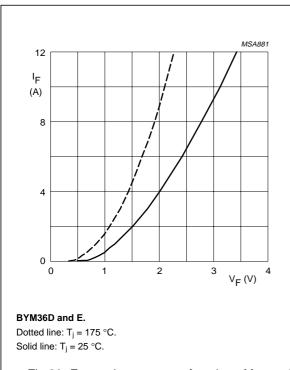
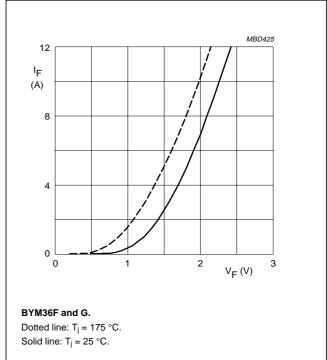
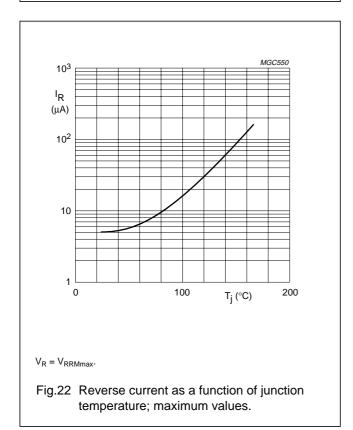
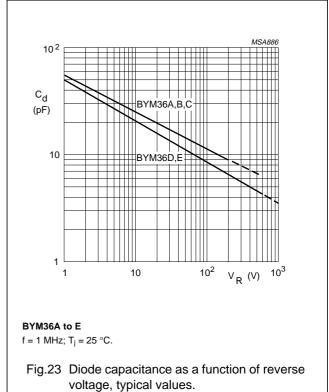
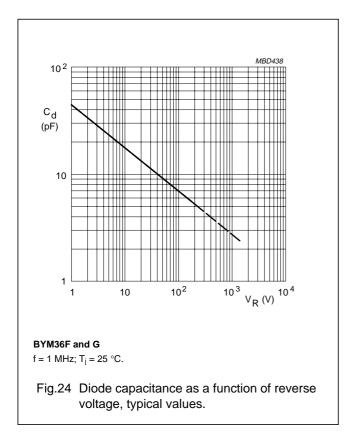
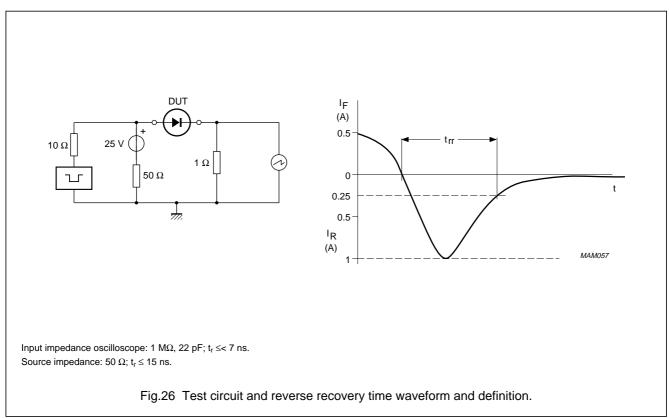


Fig.20 Forward current as a function of forward voltage; maximum values.

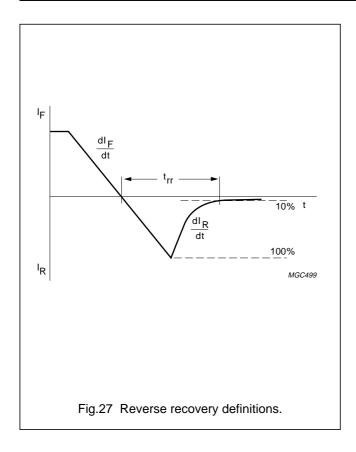





Fig.21 Forward current as a function of forward voltage; maximum values.

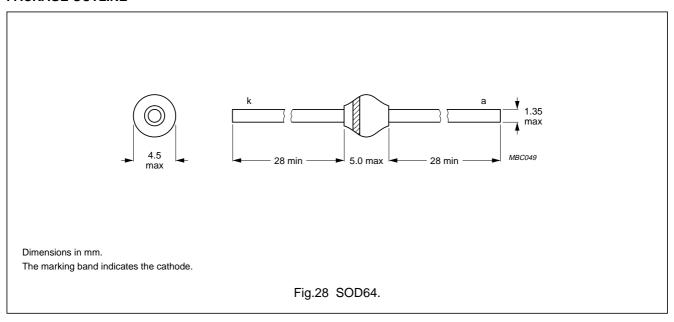


Fast soft-recovery controlled avalanche rectifiers

BYM36 series



Fast soft-recovery controlled avalanche rectifiers


BYM36 series

Fast soft-recovery controlled avalanche rectifiers

BYM36 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.