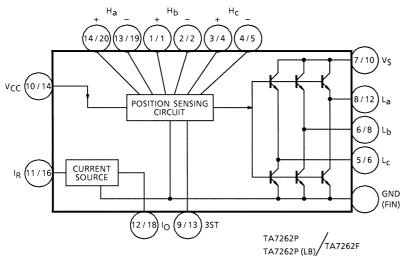
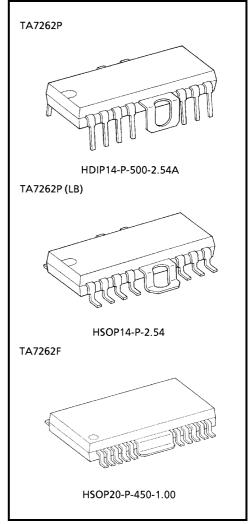
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7262P,TA7262P(LB),TA7262F


DC MOTOR DRIVER (3 PHASE Bi-DIRECTIONAL)


The TA7262P / P (LB) / F are 3 Phase Bi-Directional supply-voltage-control Motor Driver IC. It's designed especially for energy saving Motor Control System. It contains Power Drivers, CW / CCW control circuit position sensing amplifiers and current regulator for external connected position sensing elements.

FEATURES

- Output Current is Up to 1.5 A (AVE).
- Supply Voltage Control Motor Driver.
- Variable Current Source for Hall Sensor Including.
- Few External Parts Required.
- High Sensitivity of Position Sensing Inputs.

BLOCK DIAGRAM

Weight

HDIP14-P-500-2.54A: 3.00 g (Typ.) HSOP14-P-2.54 : 3.00 g (Typ.) HSOP20-P-450-1.00: 0.79 g (Typ.)

980910EBA2

• The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is subject to change without notice.

[•] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

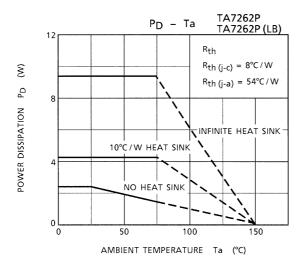
PIN FUNCTION

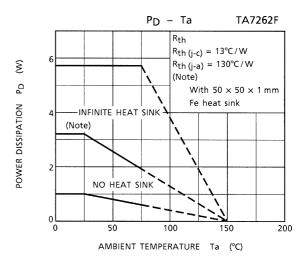
PIN No.		CVMDOL	FUNCTION DESCRIPTION		
P TYPE	F TYPE	SYMBOL	FUNCTION DESCRIPTION		
1	1	H _b +	b-phase Hall Amp. positive input terminal		
2	2	H _b -	b-phase Hall Amp. negative input terminal		
3	4	H _c +	c-phase Hall Amp. positive input terminal		
4	5	H _c -	c-phase Hall Amp. negative input terminal		
5	6	L _c	c-phase drive output terminal		
6	8	L _b	b-phase drive output terminal		
7	10	Vs	Supply voltage terminal for motter driver		
8	12	La	a-phase drive output terminal		
9	13	3ST	Forward rotation / Reverse rotation / Stop switch terminal		
10	14	V _{CC}	Power supply input terminal for small signal		
11	16	I _R	Hall element bias current control terminal		
12	18	Io	Hall element bias negative-side connector terminal		
13	19	H _a -	a-phase Hall Amp. negative input terminal		
14	20	H _a +	a-phase Hall Amp. positive input terminal		
Fin	Fin	GND	_		

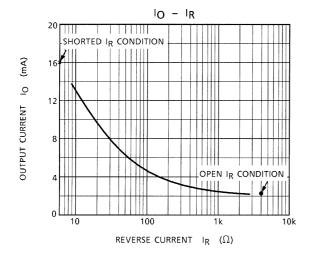
F Type: Pin (3), (7), (9), (11), (15), (17) N. C.

FUNCTION

FRS INPUT	POSITION SENSING INPUT			COIL OUTPUT			
FRS INPUT	Ha	H _b	H _c	La	L _b	L _c	
	1	0	1	Н	L	M	
	1	0	0	Н	М	L	
CW	1	1	0	М	Н	L	
CVV	0	1	0	L	Н	М	
	0	1	1	L N		Н	
	0	0	1	М	L	Н	
	1	0	1	L	Н	М	
	1	0	0	L	М	Н	
CCM	1	1	0	М	L	Н	
CCW	0	1	0	H L		М	
	0	1	1	Н	М	L	
	0	0	1	M	Н	L	
	1	0	1				
STOP	1	0	0	High Impedance			
	1	1	0				
	0	1	0				
	0	1	1				
	0	0	1				

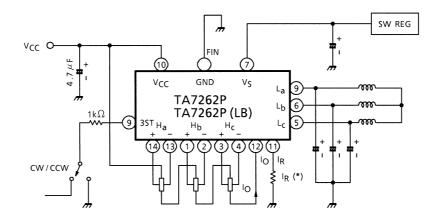

MAXIMUM RATINGS (Ta = 25°C)

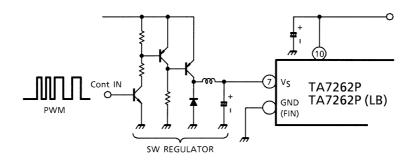

CHARAC	TERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage (MOTOR)		VS	25	V	
Supply Voltage (C	ONTROL)	V _{CC}	25	V	
Output Current (M	OTOR)	Io	1.5	Α	
Output Current		I _{CS}	40	mA	
Position Sensing I	Position Sensing Input Voltage		400	mV _{p-p}	
Power Dissipation	TA7262P		2.3	W	
	TA7262P (LB)	P _D (Note)	2.3		
	TA7262F		1.0		
Operating Temperature		Topr	-30~75	°C	
Storage Temperature		T _{stg}	-55~150	°C	


Note: No heat sink

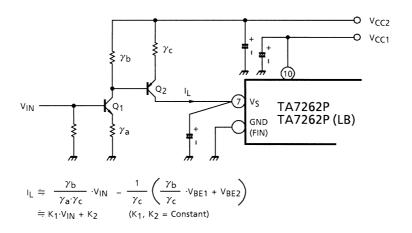
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{CC} = 9 V, V_S = 12.8 V, 3ST = 5 V, V_H = ±20 mV, R_L = 6 Ω , Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION (TA7262P, TA7262P (LB))	MIN	TYP.	MAX	UNIT	
			ICC-1	C-2 —	V _{CC} = 9 V, 3 ST GND, V _S open	_	5.7	6.5	mA
Quiescent Current		I _{CC-2}	V _{CC} = 25 V, 3 ST GND, V _S open		_	8.0	11.0		
		I _{CC-3}	Stop (3 ST = V _{CC})		_	_	4		
Saturation Voltage		V _{SAT}	_	I _O = 1 A, (total)	_	_	2.0	V	
Saturation Voltage Differential		D-V _{SAT}	_	I _O = 1 A	_	100	180	mV	
Cut-off Current	Cut-off Current Upper Lower		I _{CC-U}	_	V _S = 22 V	_	_	50	- μΑ
Cut-on Current			I _{CC-L}		V _S = 22 V	_	_	50	
Position	Input Se	ensitivity	V _H	_	_	_	20	_	mV_{p-p}
Sensing	Input O	ffset	V _{OFST}		_	_	0	5	mV
Input Voltage	Operati	ng DC Level	CMR		_	2	_	V _{CC} – 2.5	V
CW / CCW Control Operating Voltage CCW		V _{FW}		_	1.2	_	7.8		
		Stop	V _{STP}	_	_	8.6	V _C C	_	V
		CCW	V _{RV}		_	_	0	0.4	
Output Current of Current Source		I _{CS-1}		I _R open	1.5	2.2	3.0	mA	
		I _{CS-2}		I _R = 100 Ω	3.0	4.4	5.5		





APPLICATION CIRCUIT 1

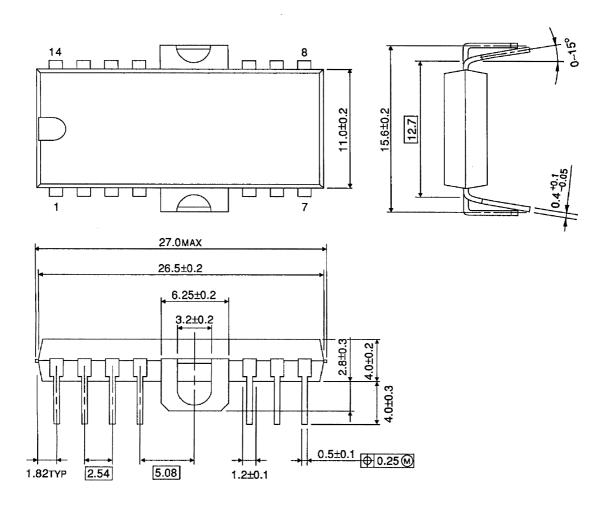


Hall sensor driving current (I_O) can be changed by I_R.
 Refer to I_R vs I_O characteristics.

APPLICATION CIRCUIT 2

APPLICATION CIRCUIT 3

 Q_2 works as a Current Regulator for Output Coil. Therefore, Collector to Emitter Voltage of Q_2 is varied in accordance with required coil current.


Note 1: Utmost care is necessary in the design of the output line, V_S and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

Note 2: Don't keep 3 ST terminal open.

OUTLINE DRAWING

HDIP14-P-500-2.54A

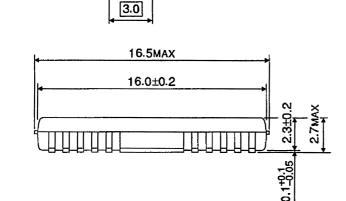
Unit: mm

Weight: 3.00 g (Typ.)

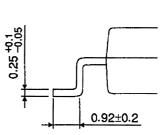
OUTLINE DRAWING

HSOP14-P-2.54 Unit: mm 6.25±0.2 11.0±0.2 17.0±0.3 0.5±0.1 0.25 M 1.82TYP 2.54 5.08 1.2±0.1 27.0MAX 26.5±0.2 3.2±0.2 4.0±0.2 5.45MAX 0.4±0.1 2.15±0.1 2.6±0.2

Weight: 3.00 g (Typ.)


OUTLINE DRAWING

HSOP20-P-450-1.00


Unit: mm

10

0.5±0.1 0.2 W

1.0

Weight: 0.79 g (Typ.)

1.0TYP