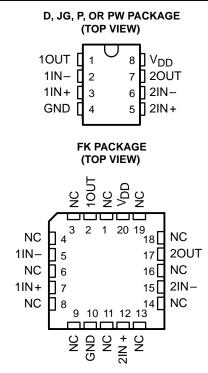
• Trimmed Offset Voltage:

TLC277 . . . 500 μ V Max at 25°C, V_{DD} = 5 V

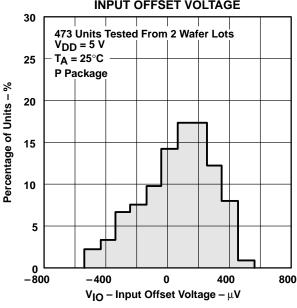
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V


- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-in Latch-Up Immunity

description

The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching those of general-purpose BiFET devices.


These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the

NC - No internal connection

DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE

low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

LinCMOS is a trademark of Texas Instruments.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

description (continued)

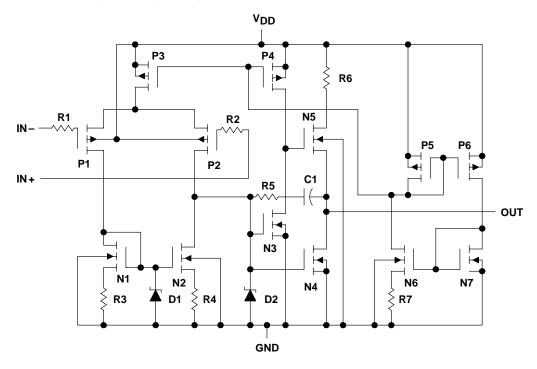
AVAILABLE OPTIONS

			PAC	KAGED DEVI	ES		CHIP
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	P DIP TS		FORM (Y)
0°C to 70°c	500 μV 2 mV 5 mV 10mV	TLC277CD TLC272BCD TLC272ACD TLC272CD	1	1111	TLC277CP TLC272BCP TLC272ACP TLC272CP	— — — TLC272CPW	— — — TLC272Y
-40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC277ID TLC272BID TLC272AID TLC272ID			TLC277IP TLC272BIP TLC272AIP TLC272IP		 - -

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.


The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.



equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, V _{ID} (see Note 2)	±V _{DD}
Input voltage range, V _I (any input)	0.3 V to V _{DD}
Input current, I ₁	
output current, IO (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	Con Dissipation Dating Table
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	,
•	0°C to 70°C
Operating free-air temperature, T _A : C suffix	0°C to 70°C 40°C to 85°C
Operating free-air temperature, T _A : C suffix	0°C to 70°C 40°C to 85°C 55°C to 125°C
Operating free-air temperature, T _A : C suffix	0°C to 70°C 40°C to 85°C 55°C to 125°C 65°C to 150°C
Operating free-air temperature, T _A : C suffix I suffix M suffix Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
Common-mode input voltage, V _{IC}	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, v[C	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

No		PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272			UNIT
No Note							MIN	TYP	MAX	
No and the second sec			TI C272C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No N			TLC272C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	m\/
No N			TI C070AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
TLC2778C NO = 1.4 V, NO	\ \	Innut offset valtege	TLCZTZAC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
No contact No	VIO	input onset voltage	TI COZODO	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
TLC277C N _S = 50 Ω, N _L = 10 kD Full range 1500 N _C = 1.4 V, N _C = 0, N _C = 1.4 V, N _C = 1.4 V, N _C = 0.4 V, N _C = 1.5 V, N _C = 1.5 V, N _C = 2.5 V, N _C = 5 V, N _C = 6.0 94 N _C = 1.6 (a) 3.5 N _C = 1.5 (TLC272BC		$R_L = 10 \text{ k}\Omega$	Full range			3000	/
No common-mode input voltage No common-mode input voltage No common-mode input voltage No common-mode rejection ratio No			TI 00770	$V_{O} = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		200	500	μν
Temperature coefficient of input offiset voltage 1.8 μV/°C 1.8 μV/°C Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VIC = 0.5 V,			1LC2//C		$R_L = 10 \text{ k}\Omega$	Full range			1500	
Input offset current (see Note 4)	0,40	Temperature coefficient of input	effect voltage			25°C to		1.0		\//°C
Input offset current (see Note 4)	ωVIO	remperature coemcient of input t	oliset voltage			70°C		1.0		μν/ С
Input bias current (see Note 4) Vo = 2.5 V, Vo = 2.	الما	Input offset current (see Note 4)				25°C		0.1	60	nΑ
Input bias current (see Note 4) PA PA PA PA PA PA PA P	10	input offset outront (see Note 4)		Va = 25 V	V10 - 25 V	70°C		7	300	ρ'n
VICR Common-mode input voltage range (see Note 5) Voltage Note 5 Voltage Note 5) Voltage Note 5 Voltage Not		Input hise current (see Note 4)		VO = 2.5 V,	VIC = 2.5 V	25°C		0.6	60	nΔ
$V_{ICR} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ΊΒ	input bias current (see Note 4)				70°C		40	600	PΛ
V _{ICR} Common-mode input voltage range (see Note 5) V V _{ID} = 100 mV, V _I										
$V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 10 \text{k} \Omega \begin{array}{c} -0.2 \\ \text{Full range} \\ 3.5 \end{array} \qquad V$ $V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 10 \text{k} \Omega \begin{array}{c} 25^{\circ}\text{C} \\ 3.2 3.8 \\ 70^{\circ}\text{C} \\ 3 3.8 \end{array} \qquad V$ $V_{OL} \text{Low-level output voltage} V_{ID} = -100 \text{mV}, I_{OL} = 0 \begin{array}{c} 25^{\circ}\text{C} \\ 0.5 0.50 \\ 70^{\circ}\text{C} \\ 0.5 0.50 \\ 70^{\circ}\text{C} \\ 0.5 0.50 \\ 70^{\circ}\text{C} \\ 0.5 23 \\ 0.5 0.50 \\ 70^{\circ}\text{C} \\ 0.5 23 \\ 0.5 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\$						25°C				V
$V_{OH} \text{High-level output voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VICR		ige					4.2		
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad 0^{\circ}\text{C} \qquad 3.2 3.8 \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad 0^{\circ}\text{C} \qquad 3 3.8 \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad 0^{\circ}\text{C} \qquad 0 50 \qquad \text{mV}$ $V_{O} = 0.25 \text{V to 2 V}, R_L = 10 \text{k}\Omega \qquad 0^{\circ}\text{C} \qquad 4 27 \qquad V/\text{mV}$ $V_{O} = 0.25 \text{V to 2 V}, R_L = 10 \text{k}\Omega \qquad 0^{\circ}\text{C} \qquad 4 27 \qquad V/\text{mV}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 1.4 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 1.4 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 1.4 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 1.4 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 1.4 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 0.25 \text{V to 10 V}, V_{O} = 0.25 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 0.25 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 0.25 \text{V}$ $V_{O} = 0.25 \text{V to 10 V}, V_{O} = 0.25 \text{V}$ $V_{O} = 0.25 \text{V}$ V_{O}		Note of			Full range				V	
$\begin{array}{c} V_{OH} \mbox{High-level output voltage} \\ V_{ID} = 100 \ \mbox{mV}, \qquad R_L = 10 \ \mbox{k} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$										
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 70^{\circ}\text{C} & 3 & 3.8 \\ 25^{\circ}\text{C} & 0 & 50 \\ 70^{\circ}\text{C} & 0 & 50 \\ 70^{\circ}\text{C} & 0 & 50 \\ \hline 70^{\circ}\text{C} & 5 & 23 \\ \hline 23^{\circ}\text{C} & 5 & 23 \\ \hline V_{ID} = 0.25 \text{V to 2 V}, R_L = 10 \text{k}\Omega \\ \hline 70^{\circ}\text{C} & 4 & 27 \\ \hline 70^{\circ}\text{C} & 4 & 20 \\ \hline 70^{\circ}\text{C} & 65 & 80 \\ \hline 70^{\circ}\text{C} & 60 & 84 \\ \hline 70^{\circ}\text{C} & 60 & 85 \\ \hline \\ R_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ \text{($\Delta V_{DD}/\Delta V_{IO})} \end{array} \qquad V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ \hline V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ \hline V_{O} = 2.5 \text{V}, \\ N_{O} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} \text{NO} = 0.25 \text{V}, \\ \text{NO} \text{load} \end{array} \qquad \begin{array}{c} $						25°C	3.2	3.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	3	3.8		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						70°C	3	3.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						70°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	5	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _{VD}	Large-signal differential voltage a	amplification	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	0°C	4	27		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						70°C	4	20		
$k_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ (\Delta V_{DD}/\Delta V_{IO}) \end{array} \qquad \begin{array}{c} V_{DD} = 5 \text{ V to 10 V}, V_{O} = 1.4 \text{ V} \\ V_{DD} = 5 \text{ V to 10 V}, V_{O} = 1.4 \text{ V} \\ \hline 0^{\circ}\text{C} \qquad 60 \qquad 94 \\ \hline 70^{\circ}\text{C} \qquad 60 \qquad 96 \\ \hline \end{array} \qquad \begin{array}{c} \text{dB} \\ \hline 0^{\circ}\text{C} \qquad 1.4 \qquad 3.2 \\ \hline 0^{\circ}\text{C} \qquad 1.6 \qquad 3.6 \\ \hline \end{array} \qquad \begin{array}{c} \text{MA} \\ \end{array}$						25°C	65	80		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	84		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						70°C	60	85		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	95		
T0°C 60 96 T0°C 60 96 T0°C 1.4 3.2 T0°C T0	kSVR			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
$V_O = 2.5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ No load mA		(σλΩΩ\αλΙΩ)			-	70°C	60	96		
$V_O = 2.5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ No load $V_O = 2.5 \text{ V},$ No load $V_O = $						25°C		1.4	3.2	
No load	I _{DD}	Supply current (two amplifiers)			$V_{IC} = 5 V$	0°C		1.6		mA
		, , ,		INUIUAU		70°C		1.2	2.6	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272			UNIT
					,	MIN	TYP	MAX	
		TLC272C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102720	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
		TLC272AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
\ _{\\\}	Input offeet voltage	TLOZIZAC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	
VIO	Input offset voltage	TI COZODO	V _O = 1.4 V,	V _{IC} = 0,	25°C		290	2000	
		TLC272BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3000	μV
		TI C077C	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		250	800	μν
		TLC277C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			1900	
C), # C	Tomporature coefficient of input of	ffact voltage			25°C to		2		μV/°C
ανιο	Temperature coefficient of input of	iisei voilage			70°C				μν/ С
I _{IO}	Input offset current (see Note 4)				25°C		0.1	60	pА
10	input onset current (see Note 4)		V _O = 5 V,	V _{IC} = 5 V	70°C		7	300	Pr
lin.	Input bias current (see Note 4)		\(\frac{1}{3}\)\(\frac{1}\)\(\frac{1}{3}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{3}\)\(\frac{1}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(1	AIC = 2 A	25°C		0.7	60	pА
lΒ	input bias current (see Note 4)				70°C		50	600	PΛ
						-0.2	-0.3		
					25°C	to 9	to 9.2		V
VICR	Common-mode input voltage ran (see Note 5)	ge				-0.2	9.2		
	(see Note 3)				Full range	-0.2 to			V
						8.5			
					25°C	8	8.5		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
A _{VD}	Large-signal differential voltage a	mplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
					70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	88		dB
					70°C	60	88		
					25°C	65	95		
kSVR	Supply-voltage rejection ratio		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	0°C	60	94		dB
	$(\Delta V_{DD}/\Delta V_{IO})$			-	70°C	60	96		
					25°C		1.9	4	
I _{DD}	Supply current (two amplifiers)		$V_O = 2.5 \text{ V},$	$V_{IC} = 5 V$	0°C		2.3	4.4	mA
			No load		70°C		1.6	3.4	
t =									

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †		2I, TLC2 2BI, TLC		UNIT
					, ,	MIN	TYP	MAX	
		TLC272I	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLOZIZI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	mV
		TI COZOAI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Innut offeet valtege	TLC272AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TI COZODI	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
		TLC272BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	/
		TLC277I	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μV
		TLOZITI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
(X) // O	Temperature coefficient of input of	offeet voltage			25°C to		1.8		μV/°C
ανιο	Temperature coemicient of imput of	onset voltage			85°C		1.0		μν/ Ο
110	Input offset current (see Note 4)				25°C		0.1	60	pА
.10	impar shoot surrent (see Hete 1)		V _O = 2.5 V,	V _{IC} = 2.5 V	85°C		24	15	P''
I _{IB}	Input bias current (see Note 4)		10 - 2.0 v,	VIC - 2.0 V	25°C		0.6	60	pА
пр	input bias current (see Note 4)				85°C		200	35	p/ (
						-0.2	-0.3		
					25°C	to 4	to 4.2		V
VICR	Common-mode input voltage rar (see Note 5)	ige					4.2		
	(see Note 5)			Full range	-0.2 to			V	
						3.5			-
					25°C	3.2	3.8		
VOH	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage a	amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
					85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		-40°C	60	81		dB
	•		.5		85°C	60	86		
					25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
~~~	$^{\prime}$ SVR ( $\Delta$ VDD/ $\Delta$ VIO)			•	85°C	60	96		
					25°C		1.4	3.2	
I _{DD}	Supply current (two amplifiers)		$V_O = 5 V$ , $V_{IC} =$	V _{IC} = 5 V,	-40°C		1.9	4.4	mA
"	(				85°C		1.1	2.4	-
L			Į	,					

[†] Full range is -40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.



SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### electrical characteristics at specified free-air temperature, $V_{DD}$ = 10 V (unless otherwise noted)

No		PARAMETER		TEST CONDI	TIONS	T _A †		2I, TLC2 2BI, TLC		UNIT
No. 1 No.						,,	MIN	TYP	MAX	
No N			TI C2721	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
\( align************************************			TLG2721	$R_S = 50 \Omega$ ,	$R_L = 10 \text{ k}\Omega$	Full range			13	m\/
No N			TI COZOAI	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	IIIV
TLC272Bl   Ng = 50 \ \( \mathcal{2} \) \( \ma	\/.a	Input offset voltege	TLGZTZAI			Full range			7	
No continue	VIO	input onset voltage	TI COZODI	V _O = 1.4 V,	V _{IC} = 0,	25°C		290	2000	
TLC2771   NG = 1.4 V, RS = 50 Ω, RL = 10 kΩ   Full range   PA   PA   PA   PA   PA   PA   PA   P			TLG272BI			Full range			3500	/
No compon-mode input voltage   No compon-mode   No compon-mode input voltage   No compon-mode input voltage   No compon-mode input voltage   No compon-mode input voltage   No compon-mode   No compon-mode input voltage   No compon-mode   No comp			TI C2771	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	μν
No   Temperature coefficient of input offset voltage   No   10   Input offset current (see Note 4)   No   10   Input offset current (see Note 4)   No   10   Input offset current (see Note 4)   No   10   Input bias current (see Note 4)   No   Input bias curre			TLC2771			Full range			2900	
Input offset current (see Note 4)	$\alpha_{\text{VIO}}$	Temperature coefficient of input of	offset voltage					2		μV/°C
No   Fig.   No   No   No   No   No   No   No   N	li o	Input offset current (see Note 4)				25°C		0.1	60	24
In the property in the part of the par	IO	input onset current (see Note 4)		\\ <b>-</b> - <b>F</b> \\	\/.a - <b>E</b> \/	85°C		26	1000	pΑ
V _{ICR}   Common-mode input voltage range (see Note 5)   V _{ID} = 100 mV,   R _L = 10 kΩ   25°C   10   36   10   10   10   10   10   10   10   1	1	Input high surrent (one Note 4)		VO = 2V	AIC = 2 A	25°C		0.7	60	<b>π</b> Λ
$ V_{ICR} = \begin{array}{c} Common-mode input voltage range \\ (see Note 5) \\ \hline \\ V_{OH} = V_{ID} = 100  mV, \\ V_{ID} = 100 $	IIВ	input bias current (see Note 4)				85°C		220	2000	рA
Vocation							-0.2	-0.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C				V
Voh   High-level output voltage   ViD = 100 mV,   RL = 10 kΩ   25°C   8   8.5   ViD = 100 mV,   RL = 10 kΩ   25°C   8   8.5   ViD = 100 mV,   RL = 10 kΩ   25°C   7.8   8.5   ViD = 100 mV,   RL = 10 kΩ   25°C   0   50   MV   25°C   0   20°C   20	VICR	AICB	ge					9.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(see Note 5)				Full range				V
$\begin{array}{c} V_{OH}  \mbox{High-level output voltage} \\ V_{OL}  \mbox{Low-level output voltage} \\ V_{OL}  \mbox{Low-level output voltage} \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ mV,  I_{OL} = 0 \\ \mbox{V}_{ID} = -10$						i un range				v
$V_{OL}  \text{Low-level output voltage} \qquad V_{ID} = -100  \text{mV},  I_{OL} = 0 \qquad 25^{\circ}\text{C} \qquad 0 \qquad 50 \\ -40^{\circ}\text{C} \qquad 0 \qquad 50 \\ 85^{\circ}\text{C} \qquad 0 \qquad 50 \\ 10  36 \qquad 0 \qquad 0 \\ 85^{\circ}\text{C} \qquad 7  46 \qquad 0 \\ 85^{\circ}\text{C} \qquad 7  31 \qquad 0 \\ 10  10  10  10  10  10  10  $						25°C	8	8.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	∨он	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	-40°C	7.8	8.5		V
$ \begin{array}{c} V_{OL}  \  \   \   \   \   \   \   \  $						85°C	7.8	8.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	10	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD	Large-signal differential voltage a	mplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	7	46		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	7	31		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	85		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		-40°C	60	87		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						85°C	60	88		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							<del>                                     </del>	-		
Supply current (two amplifiers)   VO = 5 V, No load   VIC = 5 V, No l	ksvr			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ No load $V_{IC} = 5 \text{ V},$ No load $V_{IC} = 5 \text{ V},$ No load		(σΔDD/σΔΙΟ)			-	85°C	60	96		
IDD Supply current (two amplifiers)  No load  -40°C 2.8 5 mA						25°C		1.4	4	
INO load	IDD	Supply current (two amplifiers)			$V_{IC} = 5 V$	-40°C		2.8	5	mA
				I NO IOAU		85°C		1.5		

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.



SLOS091D - OCTOBER 1987 - REVISED JULY 2001

## electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 5 V (unless otherwise noted)

	242445752		TEOT 0011D	ITIONIO	- +	TLC27	2M, TLC	277M	
	PARAMETER		TEST COND	IIIONS	T _A †	MIN	TYP	MAX	UNIT
		TLC272M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
1//0	Input offset voltage	TLC272IVI	$R_S = 50 \Omega$ ,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
VIO	input onset voltage	TLC277M	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μV
		TLC277W	$R_S = 50 \Omega$ ,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μν
ανιο	Temperature coefficient of input cooltage	ffset			25°C to 125°C		2.1		μV/°C
l.a	Input offset ourrest (see Note 4)				25°C		0.1	60	pА
lio	Input offset current (see Note 4)		V = - 2.5.V	V: 2 F V	125°C		1.4	15	nA
1	Input bigg gurrent (see Note 4)		V _O = 2.5 V	$V_{IC} = 2.5 V$	25°C		0.6	60	pА
IВ	Input bias current (see Note 4)				125°C		9	35	nA
	Common-mode input voltage ran	ae			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	9-			Full range	0 to 3.5			V
					25°C	3.2	3.8		
VOH	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage a	mplification	$V_0 = 0.25 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
					125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
	Cumply voltage rejection ratio				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	( DD: 10/				125°C	60	97		
			V _O = 2.5 V,	V _{IC} = 2.5 V,	25°C		1.4	3.2	
$I_{DD}$	Supply current (two amplifiers)		VO = 2.5 V, No load	ν ₁ C – 2.5 ν,	−55°C		2	5	mA
					125°C		1	2.2	

[†] Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.



SLOS091D - OCTOBER 1987 - REVISED JULY 2001

## electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 10 V (unless otherwise noted)

	DADAMETED		7507 00ND	ITIONS	- +	TLC27	2M, TLC	277M	
	PARAMETER		TEST COND	ITIONS	T _A †	MIN	TYP	MAX	UNIT
		TLC272M	$V_0 = 1.4 V$ ,	$V_{IC} = 0$ ,	25°C		1.1	10	mV
VIO	Input offset voltage	TLC272IVI	$R_S = 50 \Omega$ ,	$R_L = 10 \text{ k}\Omega$	Full range			12	IIIV
VIO	input onset voltage	TLC277M	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	μV
		TLC277W	$R_S = 50 \Omega$ ,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μν
αΝΙΟ	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
lio.	Input offset current (see Note 4)				25°C		0.1	60	pА
lio	input onset current (see Note 4)		V _O = 5 V,	V10 - 5 V	125°C		1.8	15	nA
l.n	Input bias current (see Note 4)		VO = 3 V,	VIC - 3 V	25°C		0.7	60	pA
ΙΒ	input bias current (see Note 4)				125°C		10	35	nA
,,	Common-mode input voltage ra	nge			25°C	0 to 9	-0.3 to 9.2		<b>&gt;</b>
VICR	(see Note 5)				Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	IOT = 0	−55°C		0	50	mV
					125°C		0	50	
	Lorgo signal differential voltage				25°C	10	36		
$A_{VD}$	Large-signal differential voltage amplification		$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	, 				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
	Cumply valtage rejection ratio				25°C	65	95		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO} )		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
					125°C	60	97		
			V _O = 5 V,	V _{IC} = 5 V,	25°C		1.9	4	
IDD	Supply current (two amplifiers)		VO = 5 V, No load	ν _{IC} = ο ν,	−55°C		3	6	mA
					125°C		1.3	2.8	

[†]Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### electrical characteristics, $V_{DD}$ = 5 V, $T_A$ = 25°C (unless otherwise noted)

	DADAMETED	TEST COM	DITIONS	Т	LC272Y		LINUT
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ R _S = 50 \Omega,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
$\alpha_{\text{VIO}}$	Temperature coefficient of input offset voltage				1.8		μV/°C
lιο	Input offset current (see Note 4)	V _O = 2.5 V,	V:0 - 2 F V		0.1		pА
I _{IB}	Input bias current (see Note 4)	VO = 2.5 V,	$V_{IC} = 2.5 V$		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	V _O = 0.25 V to 2 V	R _L = 10 kΩ	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO} )	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

### electrical characteristics, $V_{DD}$ = 10 V, $T_A$ = 25°C (unless otherwise noted)

	DADAMETED	TEST COM	DITIONS	Т	LC272Y		LINIT
	PARAMETER	TEST CONI	OHIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
$\alpha_{VIO}$	Temperature coefficient of input offset voltage				1.8		μV/°C
lю	Input offset current (see Note 4)	V- 5.V	V:- F.V		0.1		pА
I _{IB}	Input bias current (see Note 4)	$V_0 = 5 V$ ,	$V_{IC} = 5 V$		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		٧
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	R _L = 10 kΩ	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO} )	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.



SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER		TEST CONDITIONS		TEST CONDITIONS		TLC2720 TLC272			UNIT		
				TA	MIN	TYP	MAX					
				25°C		3.6						
			V _{IPP} = 1 V	0°C		4						
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$ ,		70°C		3		\//uo				
SK	Siew rate at unity gain	C _L = 20 pF, See Figure 1	See Figure 1			25°C		2.9		V/μs		
		V _{IPP} = 2.5 V	0°C		3.1							
					70°C		2.5					
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>				
				25°C		320						
ВОМ	Maximum output-swing bandwidth $V_O = V_{OH}$ , $C_L = 20 \text{ pF}$ , $R_L = 10 \text{ k}\Omega$ , See Figure 1	VO = VOH, CL = 2	C _L = 20 pF,	0°C	340		kHz					
		See rigure r	70°C		260							
				25°C		1.7						
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	V _I = 10 mV, C _L = 20 pF,			2		MHz				
		Joee i igule 3		70°C		1.3						
		)/ 40 m)/	, ,	25°C		46°						
φm	Phase margin	$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	f = B ₁ , See Figure 3	0°C		47°		
		- 20 pr,	200 i iguio 0	70°C		43°						

### operating characteristics at specified free-air temperature, $V_{DD}$ = 10 V

	PARAMETER		TEST CONDITIONS		TEST CONDITIONS T _A		TLC272 TLC272			UNIT			
			MIN	TYP			MAX						
				25°C		5.3							
			V _{IPP} = 1 V	0°C		5.9							
SR	Slew rate at unity gain	$R_L$ = 10 kΩ, $C_L$ = 20 pF,		70°C		4.3		\//uo					
	Siew rate at unity gain	See Figure 1		25°C		4.6		V/μs					
			V _{IPP} = 5.5 V	0°C		5.1							
						70°C		3.8					
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>					
			_	25°C		200							
ВОМ		VO = VOH,		0°C		220		kHz					
		$R_L = 10 \text{ k}\Omega$ , See Figure 1	See Figure 1	70°C		140							
				25°C		2.2							
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3		0°C		2.5		MHz					
		See Figure 3		70°C		1.8							
		)/ 40 m)/	, ,	25°C		49°							
φm	Phase margin	$V_{I} = 10 \text{ mV},$	$V_{\parallel} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$= 10 \text{ mV}, \qquad f = B_1,$ $L = 20 \text{ pF}, \qquad \text{See Figure 3}$	0°C		50°		
		OL = 20 pi ,	Occ r iguic o	70°C		46°							

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### operating characteristics at specified free-air temperature, $V_{DD}$ = 5 V

PARAMETER		ER TEST CONDITIONS		TA		2I, TLC2 2BI, TL0		UNIT							
				MIN	TYP	MAX									
				25°C		3.6									
			V _{IPP} = 1 V	-40°C		4.5									
CD.	Clausesta at units main	$R_L = 10 \text{ k}\Omega$		85°C		2.8		\//v.o							
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs							
			V _{IPP} = 2.5 V	−40°C		3.5									
											85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>							
				25°C		320									
ВОМ	Maximum output-swing bandwidth	VO = VOH,	, C _L = 20 pF, 2, See Figure 1	-40°C		380		kHz							
	-	KL = 10 ksz, See Figure	See rigure r	85°C		250									
				25°C		1.7									
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$ ,	-40°C		2.6		MHz							
		See Figure 3	See rigure 3		85°C		1.2								
				$V_{\parallel} = 10 \text{ mV},  f = 10 \text{ mV},  $		25°C		46°							
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$		$V_1 = 10 \text{ mV},$	V  = 10  mV,	f = B ₁ , See Figure 3	-40°C		49°					
	-			85°C		43°									

### operating characteristics at specified free-air temperature, $V_{DD}$ = 10 V

	PARAMETER		TEST CONDITIONS		TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT			
			_	TA	MIN	TYP	MAX				
				25°C		5.3					
			V _{IPP} = 1 V	−40°C		6.8					
SR					$R_L = 10 \text{ k}\Omega$ , $C_L = 20 \text{ pF}$ ,		85°C		4		\//uo
SK	Siew rate at unity gain	See Figure 1		25°C		4.6		V/μs			
			V _{IPP} = 5.5 V	−40°C		5.8					
				85°C		3.5					
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>			
				25°C		200					
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} ,	C _L = 20 pF,	-40°C		260		kHz			
			$R_L = 10 \text{ k}\Omega$ , See Figure 1			130					
				25°C		2.2					
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$V_I = 10 \text{ mV},  C_L = 20 \text{ pF},$			3.1		MHz			
		See Figure 3		85°C		1.7					
		14 4014	, p	25°C		49°					
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$	f = B ₁ , See Figure 3	-40°C		52°				
	-		See Figure 3	85°C		46°					

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

PARAMETER		TEST CO	NDITIONS	<b>-</b> .	TLC272M, TLC277M			LINUT				
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT				
				25°C		3.6						
			V _{IPP} = 1 V	−55°C		4.7						
SR	Clause rate at units gain	$R_L = 10 \text{ k}\Omega$ , $C_L = 20 \text{ pF}$ ,		125°C		2.3		\//v.a				
SK	Slew rate at unity gain	See Figure 1		25°C		2.9		V/μS				
	and the second s		V _{IPP} = 2.5 V	−55°C		3.7		V/µs nV/√ <del>Hz</del>				
				125°C		2						
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>				
				25°C		320						
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$ , $R_L = 10 \text{ k}\Omega$ ,	C _L = 20 pF,	−55°C	−55°C 400		kHz					
		KL = 10 K22,	See Figure 1	125°C		230						
				25°C		1.7						
В1		V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	−55°C		2.9		MHz				
		See Figure 3		125°C		1.1						
		Phase margin $ \begin{array}{c} V_I = 10 \text{ mV}, & f = B_1, \\ C_L = 20 \text{ pF}, & \text{See Figure} \end{array} $	4 D	25°C		46°						
φm	Phase margin		$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	r = 61, See Figure 3	−55°C		49°	0	
	-		Occ rigule 3	125°C		41°						

### operating characteristics at specified free-air temperature, $V_{DD}$ = 10 V

	DADAMETED	TEST CO.	TEST CONDITIONS		TLC272M, TLC277M			UNIT												
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNII												
				25°C		5.3														
			V _{IPP} = 1 V	−55°C		7.1														
SR	Slew rate at unity gain	$R_L$ = 10 kΩ, $C_L$ = 20 pF,	125°C		3.1		V/μs													
J Six	Siew rate at unity gain	See Figure 1		25°C		4.6		ν/μ5												
			V _{IPP} = 5.5 V	−55°C		6.1														
					125°C		2.7													
٧ _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$ ,	25°C		25		nV/√ <del>Hz</del>												
		V _O = V _{OH} ,	V _O = V _{OH} ,	V _O = V _{OH} ,		25°C		200												
ВОМ	Maximum output-swing bandwidth				VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH,	VO = VOH, $R_1 = 10 \text{ k}\Omega$ ,	C _L = 20 pF,	−55°C	
		11 = 10 132,	occ rigure r	125°C		110														
				25°C		2.2														
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$ ,	−55°C		3.4		MHz												
		See Figure 3	See Figure 3	See Figure 3	See Figure 3		125°C		1.6											
	.,,			, D	25°C		49°													
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ nF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	$V_1 = 10 \text{ mV},$ $C_1 = 20 \text{ pF}$	f = B ₁ , See Figure 3	−55°C		52°										
			occ i iguie o	125°C		44°														

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

### operating characteristics, $V_{DD}$ = 5 V, $T_A$ = 25°C

	PARAMETER		TEST CONDITIONS			TLC272Y		
	PARAMETER	11				TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$ ,	$C_L = 20 pF$ ,	V _{IPP} = 1 V		3.6		V/μs
SK	Siew rate at unity gain	See Figure 1		V _{IPP} = 2.5 V		2.9		V/μS
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$ ,	See Figure 2		25		nV/√ <del>Hz</del>
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF,$	$R_L = 10 \text{ k}\Omega$ ,		320		kHz
В1	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	$C_L = 20 pF,$		46°		

### operating characteristics, $V_{DD}$ = 10 V, $T_A$ = 25°C

	PARAMETER	_	TEST CONDITIONS			TLC272Y		
	PARAMETER	11	TEST CONDITIONS				MAX	UNIT
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$ ,	$C_L = 20 pF$ ,	V _{IPP} = 1 V		5.3		V/μs
SK .	Siew rate at unity gain	See Figure 1		V _{IPP} = 5.5 V		4.6		V/μS
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$ ,	See Figure 2		25		nV/√ <del>Hz</del>
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF,$	$R_L = 10 \text{ k}\Omega$ ,		200		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		

#### PARAMETER MEASUREMENT INFORMATION

#### single-supply versus split-supply test circuits

Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

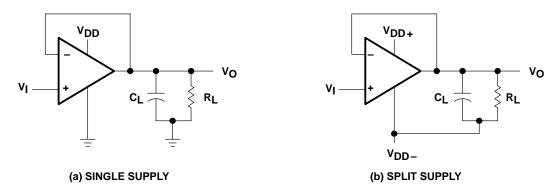



Figure 1. Unity-Gain Amplifier

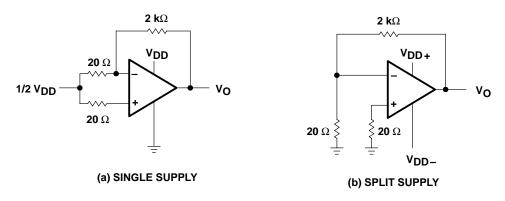



Figure 2. Noise-Test Circuit

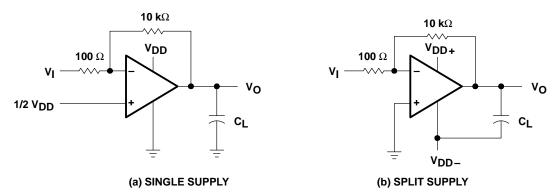



Figure 3. Gain-of-100 Inverting Amplifier



SLOS091D - OCTOBER 1987 - REVISED JULY 2001

#### PARAMETER MEASUREMENT INFORMATION

#### input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

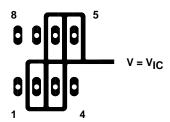



Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

#### low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

#### input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS091D - OCTOBER 1987 - REVISED JULY 2001

#### PARAMETER MEASUREMENT INFORMATION

#### full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

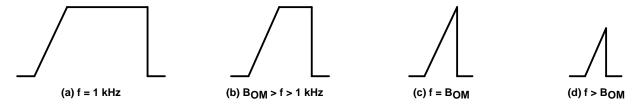
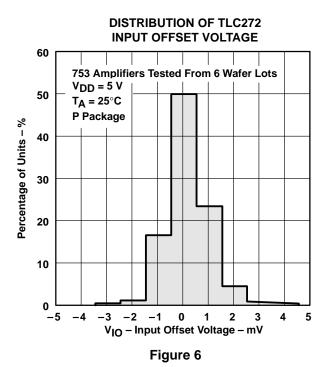


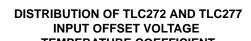

Figure 5. Full-Power-Response Output Signal

#### test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.




SLOS091D - OCTOBER 1987 - REVISED JULY 2001


#### **TYPICAL CHARACTERISTICS**

#### **Table of Graphs**

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
ΙO	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
٧ _n	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

#### TYPICAL CHARACTERISTICS





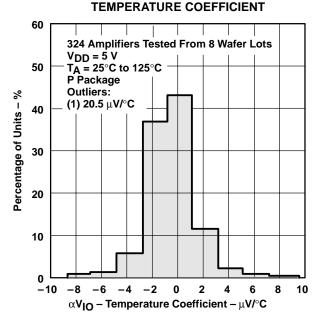



Figure 8

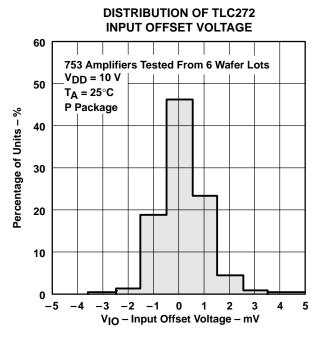



Figure 7

#### DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

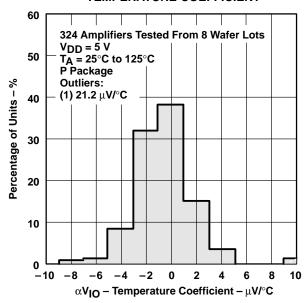
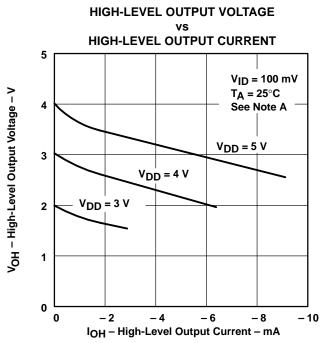
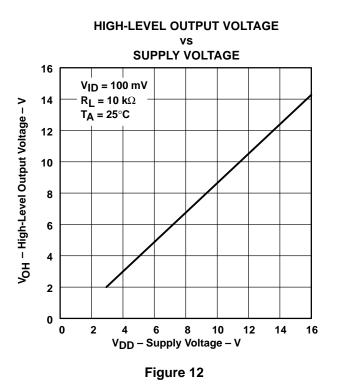





Figure 9



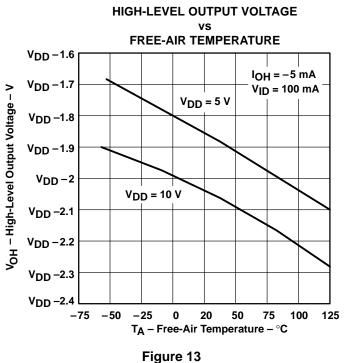

NOTE A: The 3-V curve only applies to the C version.

Figure 10



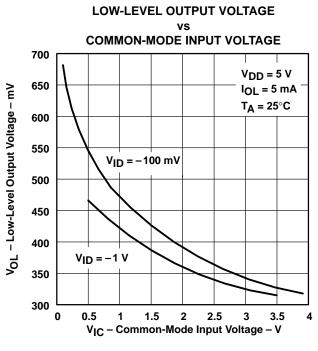

HIGH-LEVEL OUTPUT VOLTAGE **HIGH-LEVEL OUTPUT CURRENT** 16 **VID** = 100 mV 14 VOH - High-Level Output Voltage - V  $T_A = 25^{\circ}C$  $V_{DD} = 16 V$ 12 10 8  $V_{DD} = 10 V$ 6 4 2 0 -15 -20 -25 -30- 35 0 IOH - High-Level Output Current - mA

Figure 11



† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.







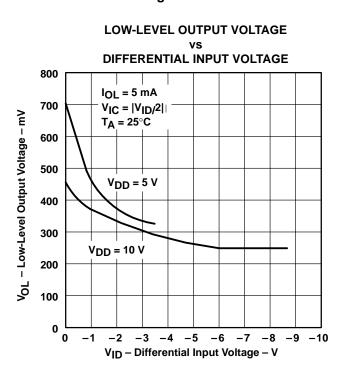



Figure 16

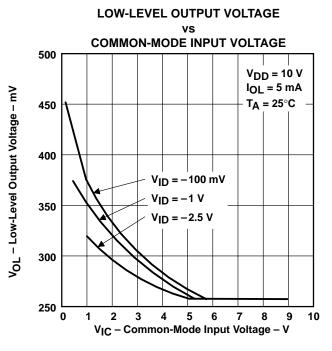
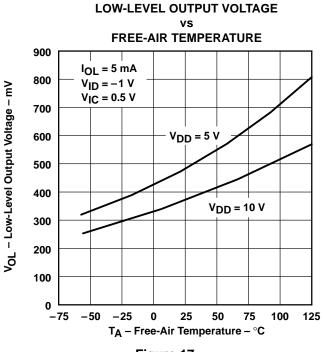
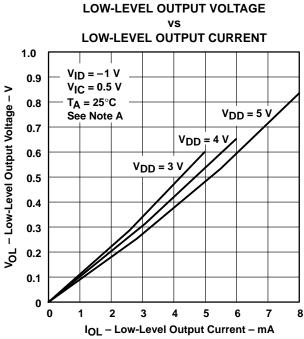



Figure 15





Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



LOW-LEVEL OUTPUT VOLTAGE

#### TYPICAL CHARACTERISTICS[†]



NOTE A: The 3-V curve only applies to the C version. **Figure 18** 

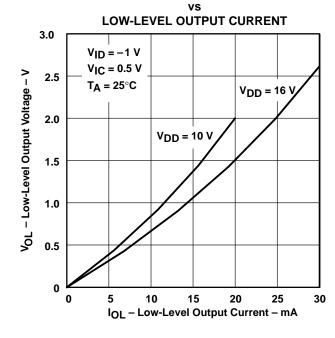
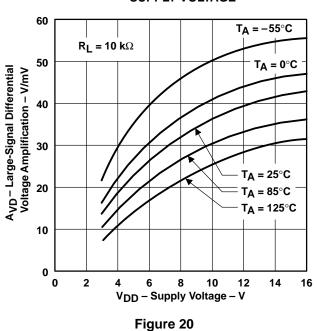




Figure 19





LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs

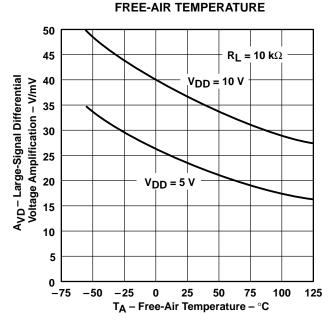
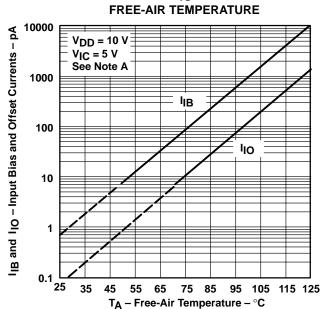




Figure 21

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



#### **INPUT BIAS CURRENT AND INPUT OFFSET CURREN** vs



NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 22

#### **SUPPLY CURRENT SUPPLY VOLTAGE** 5 $V_O = V_{DD}/2$ 4.5 No Load $T_A = -55^{\circ}C$ IDD - Supply Current - mA 3.5 $T_A = 0^{\circ}C$ 3 T_A = 25°C 2.5 1.5 T_A = 70°C 0.5 T_A = 125°C 0 2 8 10 12 14 16 V_{DD} – Supply Voltage – V Figure 24

#### **COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT** vs **SUPPLY VOLTAGE**

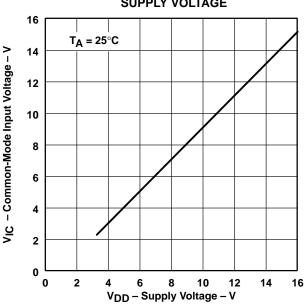



Figure 23

## **SUPPLY CURRENT**

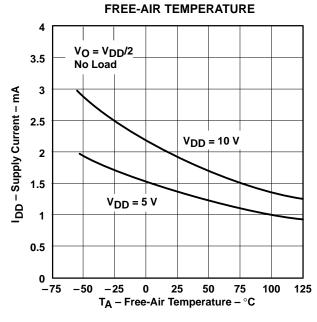
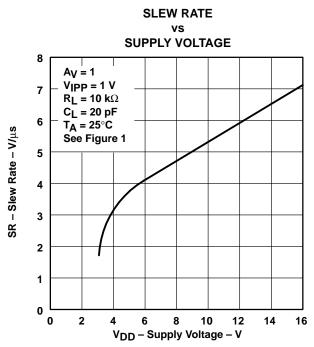




Figure 25

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.





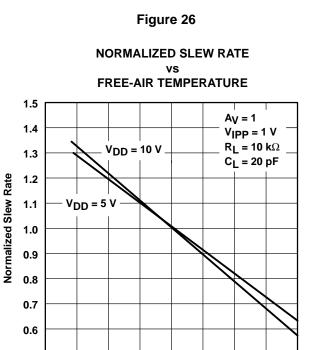



Figure 28

T_A – Free-Air Temperature – °C

25

-75 -50

-25

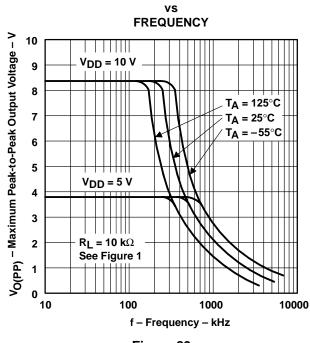
50

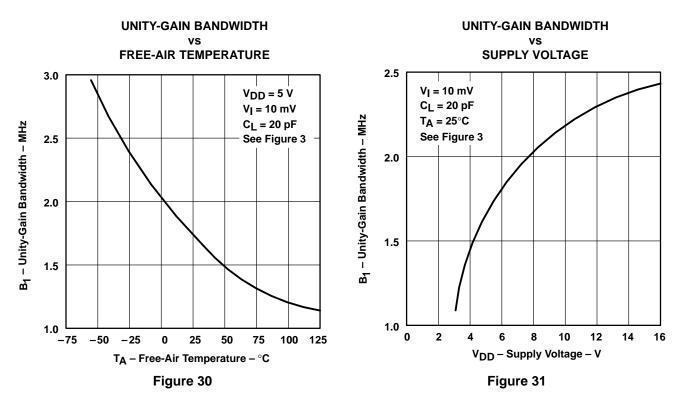
75




Figure 27

#### **MAXIMUM PEAK OUTPUT VOLTAGE**





Figure 29

125

100



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



## LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

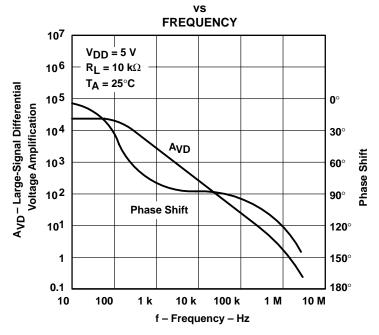



Figure 32

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



## LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

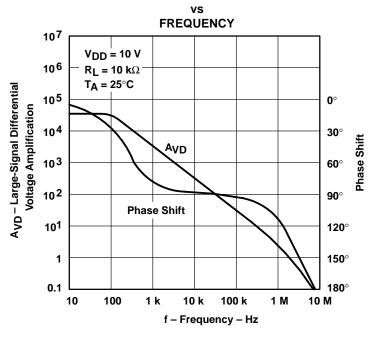



Figure 33



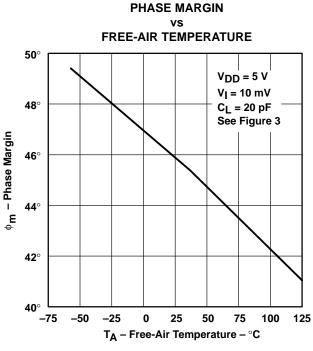
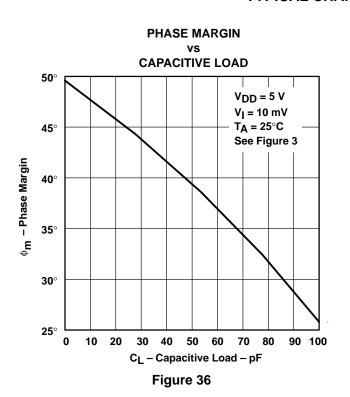
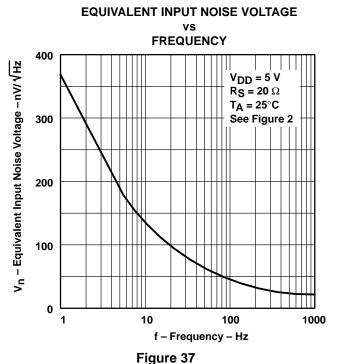





Figure 35

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

#### **TYPICAL CHARACTERISTICS**





#### single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

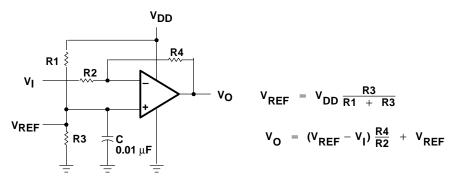
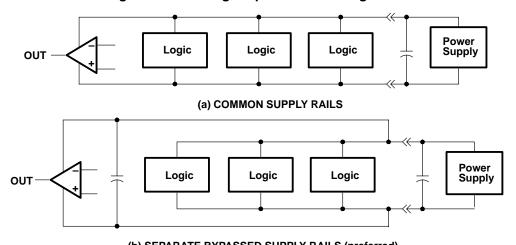




Figure 38. Inverting Amplifier With Voltage Reference



(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

Figure 39. Common vs Separate Supply Rails



#### input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at  $V_{DD}-1$  V at  $T_A=25$ °C and at  $V_{DD}-1.5$  V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1  $\mu$ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

#### noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k $\Omega$ , since bipolar devices exhibit greater noise currents.

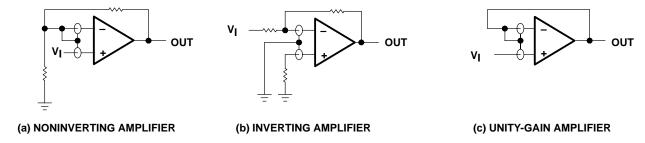



Figure 40. Guard-Ring Schemes

#### output characteristics

The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.



#### output characteristics (continued)

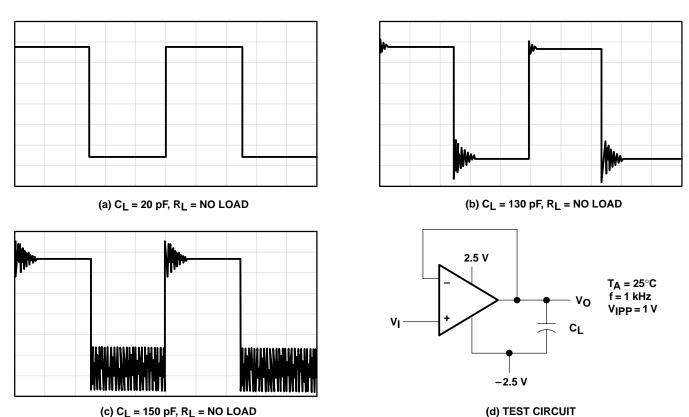
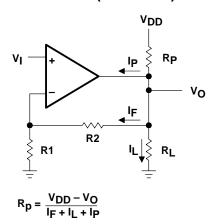




Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60  $\Omega$  and 180  $\Omega$ , depending on how hard the operational amplifier input is driven. With very low values of Rp, a voltage offset from 0 V at the output occurs. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

#### output characteristics (continued)



 $I_p$  = Pullup current required by the operational amplifier (typically 500  $\mu$ A)

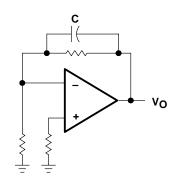


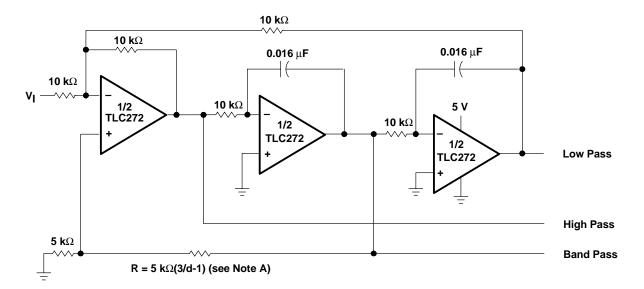

Figure 42. Resistive Pullup to Increase VOH

Figure 43. Compensation for Input Capacitance

#### feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

#### electrostatic discharge protection


The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

#### latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1  $\mu$ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.





NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter

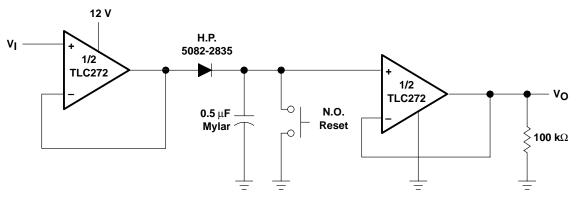
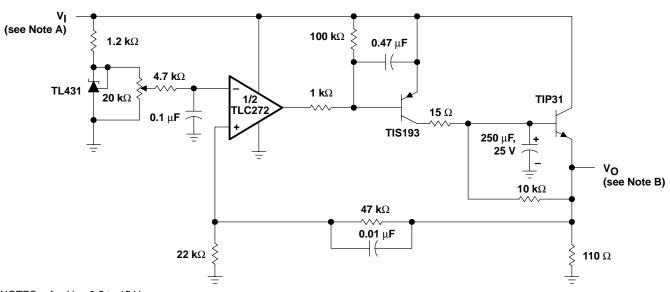
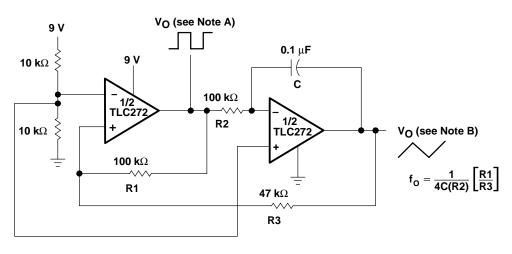





Figure 45. Positive-Peak Detector



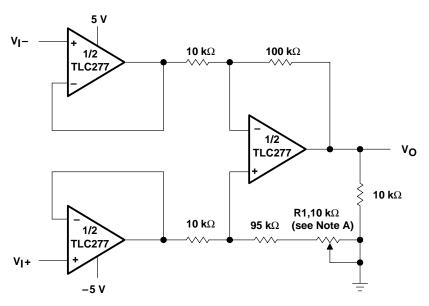

NOTES: A.  $V_I = 3.5$  to 15 V B.  $V_O = 2$  V, 0 to 1 A

Figure 46. Logic-Array Power Supply



NOTES: A.  $V_{O(PP)} = 8 \text{ V}$ B.  $V_{O(PP)} = 4 \text{ V}$ 

Figure 47. Single-Supply Function Generator



NOTE B: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

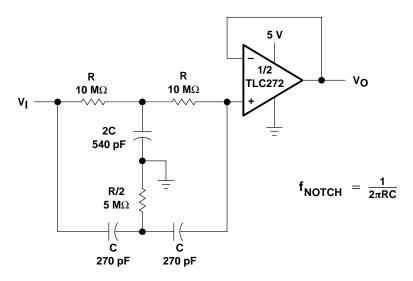



Figure 49. Single-Supply Twin-T Notch Filter

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265